TECHNISCHE UNIVERSITAT BERLIN
FAKULTAT FUR ELEKTROTECHNIK UND INFORMATIK
LEHRSTUHL FUR INTELLIGENTE NETZE
UND MANAGEMENT VERTEILTER SYSTEME

On predictable performance for
distributed systems

vorgelegt von

Lalith Suresh Puthalath

Fakultat IV — Elektrotechnik und Informatik
der Technischen Universitat Berlin
zur Erlangung des akademischen Grades
DOKTOR DER INGENIEURWISSENSCHAFTEN (DR.-ING.)
genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr. Volker Markl, Technische Universitat Berlin
Gutachterin: Prof. Anja Feldmann, Ph. D., Technische Universitit Berlin
Gutachter: Prof. Dr. Marco Canini, Université Catholique de Louvain
Gutachter: Prof. Dr. Jon Crowcroft, University of Cambridge

Gutachter: Prof. Dr. Willy Zwaenepoel, Ecole Polytechnique Fédérale de Lausanne

Tag der wissenschaftlichen Aussprache: 27. Juni, 2016

Berlin 2016
D 83

www.manaraa.com

ProQuest Number:27610224

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

ProQuest.

ProQuest 27610224

Published by ProQuest LLC (2019). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106 — 1346

www.manharaa.com

www.manharaa.com

Abstract

Today, we increasingly rely on a plethora of interactive online services for social
networking, e-commerce, video and audio streaming, email, and web search. These
services need to deal with billions of visits per day while handling unprecedented
volumes of data. At the same time, these services need to deliver fluid response
times to their users. Failure to do so impacts the quality of experience for users and
directly leads to revenue losses as well as increases in operational costs.

Furthermore, the massive compute and storage demands of these large online services
have necessitated a shift to the cloud. These services run inside large data-centers,
across hundreds to thousands of heterogeneous servers, leading to a paradigm called
warehouse-scale computing (WSCs). A complex ecosystem of fault-tolerant dis-
tributed systems back these services, each of which run on clusters of hundreds
to many thousands of servers. These distributed systems include data-analytics
stacks (e.g., Hadoop), distributed storage systems (e.g., Cassandra), cluster sched-
ulers (e.g., Borg), as well as web-applications architected as micro-services (e.g.,
Netflix). These systems present operational challenges that occur due to several dy-
namic conditions, such as complex inter-server request-response patterns, server-side
performance fluctuations, skews, and hot-spots in data access patterns, as well as
multi-tenancy. Several of these dynamic conditions manifest at very small timescales,
making operator intervention and tuning an infeasible means of addressing them.
As a consequence, end-to-end system performance becomes notoriously difficult to
predict and guarantee. This necessitates robust mechanisms by which distributed
systems can adapt to these dynamic conditions that occur at very short timescales.

To address this challenge, the goal of this dissertation is to develop adaptive mech-
anisms to achieve performance predictability for distributed systems. We focus our
attention on two important classes of distributed systems that permeate the WSC
landscape. The first is that of low-latency distributed storage-systems, which are
often in the critical path of online services today. Storage servers in these set-
tings experience performance fluctuations due to a multitude of reasons, and this
significantly harms application performance. We demonstrate the need for adap-
tive replica selection, wherein storage clients route requests to replica servers in
response to performance heterogeneity among different servers. We then present
the design and implementation of the C3 system, which embodies a novel adaptive
replica-selection mechanism. In C3, clients, with minimal assistance from servers,
adaptively prefer faster replicas while avoiding degenerate behaviors such as load
oscillations. In experiments conducted on Amazon EC2, in production settings at
Spotify and SoundCloud, as well as through simulations, C3 significantly reduces
tail latencies (up to 3x at the 99.9th percentile) and improves system throughput
(up to 50%). The second class of systems we focus on are service-oriented archi-
tectures (SOA) and micro-services, an increasingly popular architectural approach
to building fault-tolerant online services. We present how complex interactions be-
tween different workloads can lead to significantly degraded system performance,

www.manaraa.com

potentially leading to widespread application outages. We discuss the challenges in
meeting end-to-end performance objectives of interest in these settings, such as effi-
cient and fair resource utilization, meeting deadlines, as well as reducing latencies.
We present the design and implementation of Cicero, a system that embodies adap-
tive, distributed algorithms to enforce end-to-end resource management policies in
SOAs and micro-services. In system evaluations wherein we emulated a production
SOA, we demonstrated how Cicero can be used to achieve performance isolation
among tenants, avoid cascading failures, and meet a high fraction of end-to-end
deadlines.

www.manharaa.com

Zusammenfassung

Wir verlassen uns heutzutage zunehmend auf eine Fiille von interaktiven Onlinedien-
sten wie beispielsweise Social Networking, E-Commerce, Video und Audio-Streaming,
E-Mail und Web-Suche. Diese Dienste miissen téglich oft mehrere Milliarden An-
fragen beantworten und verarbeiten. Zur gleichen Zeit miissen die Dienste schnell-
stmogliche Antwortzeiten fiir die Endnutzer liefern. Geschieht dies nicht, so leidet
die Quality of Experience fiir die Endbenutzer und fithrt unweigerlich zu Einnah-
meverlusten sowie gestiegenen Betriebskosten.

Weiterhin haben die massiven Berechungs- und Speicheranforderungen dieser groflen
Onlinedienste eine Verlagerung eben dieser Dienste in die Cloud gefiihrt. Die Dien-
ste laufen in groen Rechenzentren auf hunderten bis tausenden heterogenen Servern
und haben somit zu dem Paradigmenwechsel hin zum Warehouse-Scale Comput-
ing (WSC) gefiihrt. Die Dienste bauen weiterhin auf einem komplexen Okosystem
von fehlertoleranten verteilten Systemen auf, wobei jeder dieser Dinste wiederum
auf einem Cluster von mehreren hundert oder tausend Servern ausgefithrt wird.
Zu diesen verteilten Systemen gehoren Systeme zur Datenanalyse (z.B. Hadoop),
verteilten Speicherlosungen (z.B. Cassandra), Cluster Schedulern (z.B. Borg) sowie
Web-Anwendungen, welche auf Mikrodiensten aufbauen (z.B. Netflix). Aufgrund
verschiedener dynamischer Aspekte, wie z.B. komplexen Anfrage-Antwort Mustern
zwischen Servern, serverseitigen Performanzfluktuationen und variierenden Anfrage-
Verteilungen, bergen diese Systeme viele Herausforderungen im Betrieb. Viele dieser
dynamischen Aspekte manifestieren sich in kurzen Zeitrdumen, so dass fiir die Be-
treiber keim eine Moglichkeit des Einreifens oder der der Feinjustierung gibt. Als
Konsequenz wird die Vorhersage und die Garantie der Performanz von Ende-zu-
Ende Systemen auflerordentlich schwierig. Somit bedarf es robuster Mechanismen,
damit sich verteilte Systeme an die dynamischen Aspekte des Betriebs anpassen
konnen.

Um obigen Herausforderungen zu begegnen, ist es das Ziel dieser Dissertation adap-
tive Mechanismen zu entwickeln, mit welchen die Vorhersage der Performanz in
verteilten Systemen ermoglicht wird. Konkret betrachten wir zwei wichtige Klassen
von verteilten Systemen, welche durchgangig in der WSC-Landschaft anzutreffen
sind. Als ersten Punkt untersuchen wir verteilte Speichersysteme mit geringen
Antwortzeiten, welche fiir viele heutigen Onlinedienste eine kritische Komponente
darstellen. Die Performanz der Server zum Speichern von Daten unterliegt hierbei
aufgrund vieler Griinde oft Fluktuationen, welche die Performanz der Anwendung
verschlechtert. So demonstrieren wir den Bedarf eines adaptiven Replika-Auswahl
Algorithmus, in welchem die Clients des Speicherdienstes Anfragen an verschiedene
Replikas in Abhéngigkeit der jeweiligen Performanz richten. Wir présentieren an-
schliefend das Design und die Implementierung des C3 Systems, welches einen
solchen neuartigen Replika-Auswahl Algorithmus umfasst. Im C3-System wenden
sich Clients ohne grofie serverseitige Unterstiitzung auf dynamische Art und Weise
an Replikas, ohne dass dies zu unerwiinschtem Verhalten wie Last-Oszillationen

www.manaraa.com

fiihrt. In unseren Experimenten, welche wir auf Amazon EC2 ausgefiihrt haben, und
welche auf Betriebslasten von Spotify und SouncCloud sowie Simulationen beruhen,
zeigen wir, dass C3 die Endlast der Latenzverteilungen signifikant (bis zu 3-fach im
99,9ten Perzentil) und den System-Durchsatz (um bis zu 50%) steigert. Als zweites
System betrachten wir Serviceorientierte Architekturen (SOA) und Mikrodienste,
welche zunehmends an Popularitit als Architektur zur Entwicklung von fehlertol-
eranten Diensten gewinnen. Wir zeigen auf, wie komplexe Interaktionen zwischen
verschienen Arbeitslasten zu signifikanten Einbuflen der Systemperformanz fiihren
kann, was wiederum zum Ausfall von Anwendungen fithren kann. Wir diskutieren
die Herausforderungen, bestimmte Ende-zu-Ende Performanzgarantien wie effiziente
und faire Resourcenverwendung, die Einhaltung von Fristen, sowie die Reduktion der
Antwortzeiten, zu realisieren. Wir stellen das Design und die Implementierung von
Cicero vor, einem System, welches adaptive und verteilte Algorithmen verwendet,
um Richtlinien des Rourcenmangements in SOAs und Mikrodiensten umzusetzen. In
unseren Systemevaluationen, in denen wir ein Produktions-SOA emulieren, zeigen
wir, wie Cicero dazu verwendet werden kann, die Leistungen, welche verschiede-
nen Endkunden gegeniiber erbracht wird, zu entkoppeln und dabei kaskadierende
Fehler zu vermeiden sowie einen moglichst hohen Anteil der Ende-zu-Ende Fristen
einzuhalten.

Ol Ll Zyl_ﬂbl

www.manharaa.com

Acknowledgements

“So long, and thanks for all the fish!”

I am extremely grateful to my advisors Anja Feldmann and Marco Canini, who
guided me throughout my PhD. They encouraged me to work harder, to keep shoot-
ing higher, and held me to very high standards; without them, I would not have
delivered this thesis. Not only have I benefited from Anja’s extensive knowledge
about all things networked, but also her vast experience with the many dimensions
of the research process. Your advice on “finding my hammer” remains etched in
my head for life. Marco’s breadth and depth of knowledge on computer systems
were critical to all projects in this thesis, and it was an honor to have been men-
tored by him over the years. I will also take with me Marco’s expertise on other
subjects, like food, Internet memes, and virtualizing governments. Anja and Marco,
you have both set the bar extremely high as I embark on building my own career as
a computer scientist, and for that, I am forever indebted.

I also extend my sincere thanks to Jon Crowcroft and Willy Zwaenepoel for their
valuable feedback on my research. It was truly an honor to have had you both on
my committee.

The close feedback cycle with Spotify and SoundCloud greatly benefited the C3
project. I am indebted to Sean Braithwaite for the fruitful collaboration with Sound-
Cloud and for making my time spent there enjoyable (especially with all those philo-
sophical conversations we had). T am grateful to Axel Liljencrantz, Jimmy Mardell
and Radovan Zvoncek from Spotify for their valuable input and suggestions. Special
thanks go to Sofie Thorsen for her contributions to the C3 project, including the
experiments she conducted at Spotify. I also greatly benefited from the summer I
spent at Microsoft Research in Redmond, which is where the Cicero project began.
Peter Bodik, Ishai Menache, and Ganesh Ananthanarayanan, it was a great privilege
to have learnt from all of you.

During the course of my research, I also benefited greatly from interactions with
my colleagues at INET. Julius Schulz-Zander, thank you for all the great times we
had working on the Odin project and for changing my life forever by introducing
me to the rolling median. Dan Levin, thank you for all the sharp feedback over the
years and the many gems on the Internet you introduced me to. Matthias Rost,
Tam grateful to have had you as an office mate over the past many years, and hope
that your relentless discipline and hard work have rubbed off on me. Ramin Khalili,
the many discussions on performance evaluation concepts with you have no doubt
influenced my research a lot, and I also cherish our time spent as rivals over table
football. It was also a pleasure to supervise many bright and talented students over
the years like Tobias Brandt and David Herzog, who I am confident will build great
careers for themselves. And to the rest of the group, thank you for the many times
you went through my dry runs.

www.manaraa.com

My six years across Europe would not have been what they were if not for the amaz-
ing friends I have had here. I extend my heartfelt gratitude to Marcus, Navaneeth,
Eva, Mariano, Wasif, Vasia, Joost, Christian, and Janine for having been a great
source of support throughout this journey. Franzi, thank you for having been with
me through both the ups and downs, and for being an endless source of strength for
me.

Last, but by no means least, I thank my father, mother, and sister for their uncon-
ditional support and encouragement, without which none of this would have been
possible.

www.manharaa.com

Eidesstattliche Erklarung

Ich versichere an Eides statt, dass ich diese Dissertation selbstédndig verfasst und
nur die angegebenen Quellen und Hilfsmittel verwendet habe.

Datum Lalith Suresh Puthalath

www.manharaa.com

www.manharaa.com

Papers

Parts of this thesis are based on the following peer-reviewed papers that have already
been published, as well as papers currently under submission. All my co-authors are
acknowledged as scientific collaborators of this work.

Pre-published papers
International conferences
SURESH, L., CANINI, M., ScHMID, S., AND FELDMANN, A. C3: Cutting tail
latency in cloud data stores via adaptive replica selection. In 12th USENIX Sympo-

sium on Networked Systems Design and Implementation (NSDI 15) (Oakland, CA,
May 2015), USENIX Association, pp. 513-527.

Papers under submission
International journals
SURESH, L., CANINI, M., SCHMID, S., FELDMANN, A. THORSEN, S., BRANDT,

T.,AND BRAITHWAITE, S. Cutting tail latency in cloud data stores via adaptive
replica selection.

International conferences

SURESH, L., BoDIK, P., MENACHE, 1., ANANTHANARAYANAN, G., AND CANINI,
M. Distributed Resource Management for Multi-tenant Micro-services.

11

ol Lalu Zyl_ﬂbl

www.manharaa.com

www.manharaa.com

Contents

1 Introduction 15
1.1 Challenges to predictable performance 16
1.2 The need for adaptive mechanisms 18
1.3 Thesis goal and scope 18
1.4 Contributionso 20
1.5 Outline e 20
2 Warehouse scale computing: background, challenges and objectives 21
2.1 From client-centric to server-centric computing 22
2.2 Towards warehouse-scale computers 22
2.3 Commodification of WSCs 23
2.4 Software for WSCs: From scale-up to scale-out distributed systems . 23
2.5 Predictable performance: Metrics of concern 24
2.6 Challenges to predictable performance in WSCs 25
2.6.1 Performance fluctuations are the norm rather than the exception 25
2.6.2 Request processing involves tens to thousands of servers . . . 26
2.6.3 Performance variability exacerbates at scale 27

2.7 Goal: Short-term adaptations to performance variability for online
SEIVICES . . . vt e e e 28
2.8 System types considered in this thesis 28
2.8.1 Cloud datastores. 29
2.8.2 Service-oriented architectures and micro-services 30
2.9 Summary . . oo ... e e 31
3 Related work 33
3.1 Using redundancy to mitigate outliers 34
3.2 Resource allocation and scheduling for storage systems 34
3.3 Resource allocation and scheduling for general distributed systems . 35
3.4 Offline, cluster computing 36
3.5 Data-center networking L oo L 36
3.6 SUMMATY e e 37
4 Reducing tail-latency for cloud data-stores 39
4.1 The Challenge of Replica Selection 41
4.1.1 Performance fluctuations are the norm 41
13

www.manaraa.com

Contents

4.1.2 Load-based replica selection is hard 43
4.1.3 Dynamic Snitching’s weaknesses 44
4.2 C3Designo 45
4.2.1 Replicaranking oL oo 46
4.2.2 Rate control and backpressure 48
4.2.3 Putting everything together o0 50
4.3 C3implementation L 50
4.4 C3 Evaluation L 52
4.4.1 Evaluation using synthetic benchmarks 52
4.4.2 Evaluation Using simulations 60
4.4.3 FEvaluations against production workloads 67
4.5 Discussion e 70
4.6 SUMMATY o e e e e e e e e 73
5 End-to-end resource allocation and scheduling for micro-services 75
5.1 Context, objectives and challenges 78
5.1.1 SOA characteristics, 78
5.1.2 Goalsof Cicero 79
5.1.3 Challenges of regulating load and latencies 80
5.2 Cicerodesign e 81
5.2.1 Designspace 81
5.2.2 Cicero components 82
5.2.3 Cicero architecture, 83
5.2.4 CiCero Core v v v i e e e 84
5.2.5 Operator policies 89
5.2.6 Implementation 0oL 90
5.3 Cicero Evaluation 91
5.3.1 Can Cicero enforce performance isolation? 93
5.3.2 Can Cicero meet end-to-end deadline targets? 94
5.3.3 Can Cicero isolate low-latency workflows from high-throughput
workflows? 95
5.3.4 Can the rate adaptation react to hotspots from skewed access
patterns?o 96
5.3.5 Quantile knob sensitivity analysis. 97
5.4 Discussion e e 99
5.5 SUMMATY o oo e e e 99
6 Conclusions and outlook 101
6.1 Summary 102
6.2 Future directions Lo 102

14

www.manaraa.com

Introduction

Today, we increasingly rely on a plethora of interactive online services for social
networking, e-commerce, video and audio streaming, email, and web search. These
online services are high-traffic websites, with providers such as Google and Facebook
handling tens of billions of visits per day that operate upon petabytes of data [1,
25].

The compute and storage requirements for operating at such scales necessitate that
more and more online services run inside large data centers [43]. This trend is
further exacerbated by the exponential growth of mobile devices and tablets as the
end point for accessing these online services [24]. This shift towards the “cloud” has
led to the paradigm of warehouse-scale computers (WSCs) [43]. In WSCs, a single
program is an entire Internet Service such as Netflix that runs across thousands
of commodity server machines. In this paradigm, an Internet service is typically
architected as a complex mix of inter-communicating distributed systems. As an
example, consider a load of a Facebook page. A user accesses Facebook over a
browser which is intercepted by a web server. The web server interacts with several
back-end systems, such as TAO [50] for the social graph, Haystack [45] for photos,
MySQL [28] and Memcached [17] for storing objects, as well as a range of sub-systems
for Facebook’s chat service [27], serving advertisements, performing type-ahead [29]
and other site features.

More generally, the distributed systems backing WSCs include various flavors of file
systems [83], data-stores [5,63], cluster schedulers [15,142], data-analytics stacks [83],
monitoring infrastructure [42], and micro-services [109,113], wherein distributed ap-
plications implementing business logic are realized as loosely coupled clusters of

15

Ol LaCN Zyl_ﬂbl

www.manharaa.com

Chapter 1 Introduction

communicating processes. A key characteristic of the aforementioned distributed
systems is that their architectures follow the scale-out approach, wherein a sys-
tem’s capacity is increased by adding more servers to an existing cluster, as op-
posed to upgrading the compute and storage capacities of individual servers. This
paradigm of system design is visible in several classes of distributed systems typical
of WSCs today. For instance, with distributed data-stores and data-analytics plat-
forms, storage capacity and bandwidth is increased by adding more storage servers
(and disks). Similarly, applications architected as micro-services comprise several
inter-communicating clusters of servers, each of which can be scaled out indepen-
dently to support higher demands and compute capacities.

Many of the systems discussed above need to work in concert to realize even a single
online service such as Netflix. At the same time, users of these online services also
expect fluid response times [77]. Several studies have shown how end users are
sensitive to even seemingly nominal increases in web page loading times, and how
this directly impacts revenues. For instance, Google reported that slowing down the
page-load time for Google Search results by 100ms to 400ms led to 0.2% to 0.6% fewer
searches [51]. In fact, users exposed to 400ms delays for six weeks in that study did
0.21% fewer searches for five weeks after the study ended, indicating that poor user
experiences have ramifications for people’s long-term behaviors. A study from Bing
found that a two-second slowdown in page-load times reduced the number of queries
per user by 1.8% and revenue per user by 4.3% [127]. Furthermore, Shopzilla [127]
discussed how a five-second speedup in page loads resulted not only in revenue
improvements but also facilitated a 50% reduction in hardware. This underlines the
fact that such performance improvements have important ramifications not only for
user satisfaction and thus revenue, but also for operating costs.

Thus, two factors intersect to form the motivation for this thesis: i) the ever-
increasing compute and storage requirements for online services mandate a shift
towards WSCs, a setting that is widespread today and is expected to remain so in
the years to come, and i) both users and providers of these online services stand to
gain from predictable performance for distributed systems typical of WSCs.

1.1 Challenges to predictable performance

While the scale-out approach has enabled building highly fault-tolerant systems with
its emphasis on redundancy, achieving predictable end-to-end performance in such
systems is challenging. This is due to two key characteristics of scale-out distributed
systems, namely, complex request-response characteristics as well as performance
fluctuations:

Complex request-response characteristics. A common characteristic of scale-
out distributed systems is that even a single operation performed by the system
requires processing across several servers in concert. For example:

16

www.manaraa.com

1.1 Challenges to predictable performance

e With distributed data-stores, even a single query from an application server
may require fetching tens to thousands of records from a cluster of storage
nodes in parallel. For instance, a single load of a Facebook page by a user
aggregates and filters hundreds of items from the social graph [50].

e In a micro-services application, a single invocation of a service-level API may
require the cooperation of several tiers of servers, each of which may comprise
hundreds of servers.

e Within Microsoft Bing, a single web search request involves multiple sequences
of processing stages, such as spell checking and ad generation. Each of these
stages may involve tens to thousands of servers [88].

A single analytics job in Apache Hadoop or Flink may involve a complex DAG
of compute activity and data transfers with dependencies [83].

These characteristics imply that even serving a single end-user request (e.g., to return
a web page) may involve calls to tens or hundreds of servers [63,88]. The slowest of
these calls to complete determines the response time of the end-user request.

Performance fluctuations. At the same time, individual servers of these large
distributed systems suffer from performance fluctuations over time [62]. These per-
formance fluctuations are caused by many factors, such as contention for shared
resources, background activities like garbage collection and log compaction, skewed
access patterns, as well as imperfect performance isolation in multi-tenant settings.
Some of these effects, such as garbage collection, occur at sub-second timescales [62,
99]. Given that a single service-level request involves processing across tens to hun-
dreds of servers, the slowest server determines the overall request completion time.
This implies that significant delays at any of these servers inflate the latency ob-
served by end users and reduce system throughput. These sources of performance
fluctuation cannot be eliminated in large and complex systems, and thus, make
end-to-end performance notoriously difficult to predict and guarantee. Thus, when
operating at scale, even rare episodes of performance variability affect a significant
fraction of all requests in large-scale distributed systems.

To summarize the challenges:

e Even a single user-level operation in a scale-out distributed system requires
request-response exchanges involving several servers.

e Delays affecting a small subset of these requests impact the overall completion
time of the user-level operation.

e Performance fluctuations at individual servers therefore impact a large fraction
of user-level operations.

17

www.manaraa.com

Chapter 1 Introduction

1.2 The need for adaptive mechanisms

As distributed systems in WSCs scale to accommodate growing user demands and
data volumes, complex inter-server dependencies lead to interactions that may com-
promise system performance. As an example, consider the Visual Studio Online
outage in 2014 [85]. The multi-tiered system architecture involved a front-end ser-
vice (Shared Platforms Services, SPS) making calls to an intermediary tier (Azure
Service Bus), which then made calls to a cloud database (SQL Azure). A single
request type from SPS was accessing a slow database on SQL Azure. These calls
from SPS were made using blocking remote procedure calls, which blocked a thread
each until a response arrived. Since the responses were delayed because of the slow
database, the thread pools on SPS servers eventually ran out of threads, starving
completely unrelated request types. This led to all requests to another service,
Team Foundation Server (TFS), being blocked because of dependencies on SPS,
which subsequently brought down Visual Studio Online.

Similarly, even in well-provisioned distributed storage clusters, unpredictable events
such as garbage collection on individual hosts can lead to latency spikes [99]. Fur-
thermore, background activities such as compaction [5,52] lead to significantly in-
creased 1/O activity, which in turn affects the storage system’s latencies as well as
throughput.

Given the sub-second timescales at which these inter-component interactions and
performance fluctuations occur, operator intervention and manual tuning of myriad
system configuration parameters are infeasible means to address the challenge of
performance predictability. This is further complicated by the fact that as systems
evolve over time, performance characteristics and bottlenecks change, and manually
tuned configuration parameters can thus quickly become outdated.

Growing system complexity and the inevitability of variable performance necessi-
tates adaptive mechanisms with which systems can quickly react to dynamic condi-
tions that occur on small timescales. These adaptive mechanisms are necessary to
build systems that deliver predictable end-to-end performance.

1.3 Thesis goal and scope

Goal. In this thesis, we focus on the question of designing adaptive mechanisms
for two important and pervasive classes of scale-out distributed systems: cloud data-
stores and micro-services applications. Our focus is on online services, which require
low end-to-end latencies, as opposed to offline services such as batch computing
where jobs run on the timescales of minutes and hours, if not days.

Distributed data-stores. A broad range of low-latency data-storage systems
are in the critical path of online services today. They include distributed key-value
stores, relational databases, in-memory caches as well as block storage systems. As

18

www.manaraa.com

1.3 Thesis goal and scope

explained earlier, these data-stores suffer from many sources of performance fluctua-
tions over time, which make it challenging for them to deliver consistently low laten-
cies, especially at higher system loads. An important characteristic of these systems
is that data is often replicated on multiple nodes for performance and fault-tolerance
reasons. Clients in such systems can then perform replica selection, wherein a client
selects one out of multiple replica servers to service a request. This presents an
opportunity for clients to respond to performance variability among servers. In this
thesis, we first discuss the fundamental challenges involved in designing a replica se-
lection scheme that is robust in the face of performance fluctuations across servers.
We illustrate these challenges through performance evaluations of the Cassandra
distributed database on Amazon EC2. We then present the design and implementa-
tion of an adaptive replica selection mechanism, C3, that is robust to performance
variability in the environment. We demonstrate C3’s effectiveness in reducing the
latency tail and improving throughput through extensive evaluations on Amazon
EC2, through simulations, and through evaluations against production workloads
from Spotify and SoundCloud. Our results show that C3 significantly improves la-
tencies along the mean, median, and tail (up to 3 times improvement at the 99.9t"
percentile) and provides up to 50% higher system throughput.

Service-oriented architectures (SOAs) and micro-services. In Service-
oriented architectures (SOA) and micro-services, a large distributed application is
broken up into collections of smaller, inter-communicating services, typically aligned
with development team boundaries. The focus on loose coupling and modularity al-
lows several teams of developers to evolve their respective services independently
of each other. However, these systems raise new challenges in attaining high per-
formance and efficient resource utilization, especially in the face of multi-tenancy
(wherein tenants may map to different external customers or consumers of the ser-
vice, but also internal product groups, applications, or various differentiated back-
ground tasks). In these systems, request execution happens across tens to even thou-
sands of processes. The execution paths and resource demands of different types of
requests across different services are generally not known a-priori. This leads to
the fundamental challenge of managing resources and scheduling requests end-to-
end, to meet various performance and fairness objectives. In this thesis, we present
a fully distributed framework for end-to-end resource management and scheduling
in multi-tenant distributed systems, named Cicero. Cicero uses distributed admis-
sion control mechanisms that dynamically adapt the rate of requests allowed in the
system according to bottlenecks detected along request execution paths, quickly
reacting to overload in the face of changing workloads. By propagating minimal
metadata through requests as they flow through the system, Cicero also enforces
the execution of scheduling policies to meet deadlines and minimize average comple-
tion times. In system evaluations against production as well as synthetic workloads,
Cicero successfully achieves various end-to-end performance objectives such as re-
ducing average latencies, meeting deadlines, providing fairness and isolation as well
as regulating system-wide load.

19

www.manaraa.com

Chapter 1 Introduction

1.4 Contributions

The contributions of this thesis are as follows:

e Adaptive replica selection for cloud data-stores: We highlight the chal-
lenges of delivering consistent and low tail-latencies in the context of replicated
and partitioned cloud data-stores. We present the need for adaptive replica
selection schemes, and highlight the challenges in designing them for practi-
cal settings. We present the design and implementation of C3, an adaptive
replica selection mechanism that is robust to performance variability in the
environment.

¢ End-to-end resource management and scheduling for micro-services:
Given the emerging nature of the micro-services approach to architecting large
and complex applications, we discuss the challenges in achieving end-to-end
performance objectives of concern for both tenants and the operator. We
then present the design and implementation of Cicero, a system that allows
enforcing a diverse range of end-to-end resource management policies in a
micro-services setting.

1.5 Outline

Chapter 2 discusses the background setting for this thesis, namely, warehouse-
scale computers (WSC). It highlights the challenges involved in achieving predictable
performance for distributed systems typical of WSCs.

Chapter 3 positions the work in this thesis with respect to related work around
end-to-end performance predictability in different systems domains.

Chapter 4 focuses on cloud data-stores, and highlights the potential for replica
selection as a means to reducing latencies in the face of server-side performance
fluctuations. It then presents the design, implementation and evaluation of the C3
system.

Chapter 5 moves beyond the two-tiered setting with storage clients and servers
as discussed in C3. It discusses the more general setting of service-oriented ar-
chitectures and micro-services (SOAs). It presents distributed algorithms embodied
within the Cicero system, that enable the enforcement of a diverse range of resource-
management policies in an SOA, such as performance isolation as well as meeting
end-to-end deadlines. We then validate our design through evaluations.

Chapter 6 concludes this thesis and outlines future work.

20

www.manaraa.com

Warehouse scale computing: background,
challenges and objectives

A complex mix of distributed systems software running inside data-center environ-
ments power online services today. These systems have specific characteristics and
challenges that motivate this thesis. In this chapter, we present relevant background
information to aid the reader in contextualizing this thesis.

In Section 2.1, we first discuss trends in building online services that motivate
server-centric computing. We highlight how this trend has led to the paradigm of
warehouse-scale computers (WSCs), wherein a single “user application” is a highly
distributed Internet service like Google Search, running atop clusters of thousands
of servers (Section 2.2). In Section 2.3, we then highlight the commodification of
WSCs, implying that they are currently — and will remain — the paradigm of choice
to build online services for years to come.

Next, we move on to a discussion of the software stack within WSCs and introduce
important terminology. In Section 2.4, we introduce scale-out distributed systems
in the context of the WSC software stack. Subsequently, we highlight important
challenges involved in achieving predictable performance in the context of these
distributed systems in Section 2.6. We then outline the scope of this thesis in terms
of the class of techniques used to tackle these challenges in Section 2.7.

21

www.manaraa.com

Chapter 2 Warehouse scale computing: background, challenges and objectives

2.1 From client-centric to server-centric computing

The proliferation of Internet services such as search, e-mail, and social networking
have accelerated the trend towards server-side and cloud computing. There are
several advantages to this trend. Users no longer need to regularly configure or
update all the software they rely upon, and simply access these services over a
browser. At the same time, service providers need not deal with myriad kinds of
operating systems, different versions of software as well as hardware from various
generations, and this significantly accelerates development lifecycles. Thus, instead
of pushing software updates to hundreds of millions of users, services such as Google
or Facebook can rapidly innovate and evolve their systems “behind the scenes,”
benefiting both users and providers. In addition, the ever-rising number of mobile
devices, which is already numbering in the billions today [24], further accelerates the
trend of pushing computing to the server side and having thin client-side software
for efficiency reasons. Furthermore, as online services themselves become richer
and more complex, the economics of increasing storage and computing requirements
also mandate this shift towards server-centric computing. In fact, these services
are prohibitive to perform on clients. For instance, services such as web search,
on-demand video streaming, and image processing require and are best served by
massive computing infrastructures.

2.2 Towards warehouse-scale computers

The data centers powering many of today’s large Internet services are no longer
a miscellaneous collection of hardware in a co-location center, running workloads
that could be served off a single or few machines (AltaVista famously ran on five
computers in 1996). They are instead a large array of physical (and/or virtualized)
servers, where even the smallest unit of software deployment for a service such as
web search may require hundreds to thousands of machines. This kind of computing
platform powering large online-services today is referred to as a warehouse-scale
computer (WSC) [43].

WSCs are a key departure from the computing model wherein a program runs on
a single machine. In a WSC, a program is instead an entire Internet service (such
as Netflix’s streaming service, Google Search or Amazon’s e-commerce site), and
instead of a single machine, thousands of servers with heterogeneous capabilities run
myriad software components. A WSC may involve a single private entity owning
the hardware, the platform software as well as the applications that run atop the
infrastructure (e.g. Google owning all its hardware and software). Alternatively,
WSCs may involve a tenant (Netflix) renting massive hardware infrastructure as
well as software services (such as access to a shared database) from a provider such
as Amazon.

22

www.manaraa.com

2.3 Commodification of WSCs

2.3 Commodification of WSCs

Barroso et al. [43] argued that the economics of server-class computing puts clusters
of hundreds of nodes within the reach of a wide band of corporations and research
organizations. Indeed, we find this stance to be vindicated. For instance, as of
January 2014, Spotify had over 5,000 physical servers and well over 1,000 virtual
servers across their public and private clouds [33]. Airbnb has around 5,000 EC2
instances running on AWS, with about 1,500 of those catering to the user-facing
portion of their application [34]. Depending on the popularity of the site, Netflix’s
world wide streaming service used as many as 10,000 machines in 2012 [30]. The
availability of easy-to-use public clouds such as Amazon AWS and Google Compute
Engine have enabled small and medium sized enterprises to quickly scale up their
infrastructure to hundreds and thousands of servers to meet business needs without
having to commit to building and maintaining data centers of their own. Further-
more, organization continue to migrate their systems to the cloud [11], suggesting
that the omnipresence of WSCs is expected to grow even further in the years to
come.

2.4 Software for WSCs: From scale-up to scale-out
distributed systems

For reasons of cost efficiency, WSCs today are typically built using large clusters of
low-end servers rather than a smaller number of high-end servers [44]. The lower
reliability and higher failure rates of individual hardware components is compen-
sated for using a highly fault-tolerant software stack comprising a mix of scale-out
distributed systems. As demand for a service grows, capacity in scale-out distributed
systems is increased not by upgrading individual servers, but by adding more server
and hardware resources to existing clusters. This also implies being able to scale
down cluster sizes during times of lower demand to reduce costs and manage system
efficiency. For instance, it is common practice to adapt the number of servers in
response to diurnal patterns in site traffic [9]. The need for such elasticity as well as
the cost efficiency of using large clusters of low-end hardware resources mean scale-
out distributed systems are essential to the paradigm of WSCs. A typical WSC thus
comprises a complex stack of systems software, which Barroso et al. [43] classify into
three broad categories:

e Platform-level software: This is software present on individual servers that
abstracts away hardware resources. This includes firmware, an operating sys-
tem kernel, as well as a variety of libraries.

e Cluster-level infrastructure: A collection of distributed systems that sim-
plify the usage of resources distributed across thousands of servers. Barroso
et al. [43] consider the union of these services as an operating system for a
data-center. Such systems include distributed file systems (e.g. HDFS [83],

23

www.manaraa.com

Chapter 2 Warehouse scale computing: background, challenges and objectives

GFS [72]), cluster schedulers (e.g. Borg [142], Apollo [48]), and distributed
storage systems (e.g. Amazon’s Dynamo [63], Cassandra [5]). These services
shield programmers building WSC applications from resource-management
and data-distribution complexity.

e Application-level software: This is software that implements a specific
service (such as Google Search, Netflix’s streaming service or Amazon’s e-
commerce site). Application-level software comprises both online and offline
services, each of which has different requirements. Online services are typically
user facing, and thus have tight requirements on end-to-end latencies (e.g.
Google search, Gmail, Spotify, SoundCloud etc.). On the other hand, offline
compute frameworks are typically used for large-scale data analysis or as part
of a pipeline that generates data used in online services (e.g. recommendations
for online shopping services, or the index for Google Search).

Scale-out distributed systems thus permeate the cluster-level and application-level
software in WSCs. Furthermore, the commodification of WSCs has driven the rapid
growth of an ecosystem of open-source software systems at the platform-, cluster-
and application- level. The Hadoop stack, NoSQL databases, application server
platforms such as Tomcat, and libraries for building service-oriented architectures
such as Hystrix [108] and Finagle [137] have allowed developers to quickly have
warehouse-scale Internet services up and running.

This thesis focuses on parts of cluster-level infrastructure, namely, distributed data-
stores (such as Dynamo [63] or Cassandra [5]), as well as architectures for building
application-level software (micro-services and service-oriented architectures).

2.5 Predictable performance: Metrics of concern

It is useful to think about the above-mentioned scale-out distributed systems as
presenting a “service” to their users. Users view these systems as black boxes that
expose a certain service through APIs. We refer to invocations of these APIs as
service-level requests. For instance, users of a data-store are often application soft-
ware that perform reads and writes against the data-store through a client library.
A service-level request in such a scenario might be a query by an application server
to fetch all records corresponding to a list of keys.

In this thesis, we are primarily interested in predictable performance for service-level
requests as described by two key metrics:

¢ i) End-to-end latency, in particular the tail of the latency distribution, such
as the 99.9th percentile latency.

e i3) Throughput, expressed in requests per second.

24

www.manaraa.com

2.6 Challenges to predictable performance in WSCs

These two metrics are often used by providers to define service-level objectives
(SLOs). For instance, the strict latency requirements for Amazon’s services are
measured by the 99.9th percentile of the latency distribution under a peak value for
client throughput [63].

2.6 Challenges to predictable performance in WSCs

Internet services backed by WSCs today need to deliver fluid response times to their
users [51,127] while simultaneously serving a high volume of traffic. At the same
time, for cost and power efficiency reasons, WSCs need to run at high levels of
system utilization as well.

To meet these goals, the distributed systems across the WSC stack must deliver
consistent and predictable performance in terms of end-to-end latency and through-
put. However, the combination of two key characteristics of these systems make
this goal challenging. First, individual servers and software components comprising
these distributed systems consistently experience performance fluctuations due to
various factors. Second, a basic unit of work submitted to one of these distributed
systems requires the cooperation of tens to thousands of servers (like a search query
to a distributed database). The combination of these two factors implies that perfor-
mance variability at the granularity of individual servers and software components
will quickly impair end-to-end performance for the distributed systems in WSCs.

We will now discuss both of these factors in detail.

2.6.1 Performance fluctuations are the norm rather than the exception

When operating WSCs involving hundreds to thousands of servers, a key challenge
is the performance fluctuations exhibited by individual servers over time. Several
studies have confirmed the degree of performance variability that plague individual
servers and components in WSCs. Dean and Barroso [62] list various sources of per-
formance variability in Google’s WSCs, including interference due to contention for
shared resources within different parts of and among applications (also discussed in
detail by Melanie et al. [93]), garbage collection, maintenance activities (such as log
compaction for log-structured storage systems), and background daemons perform-
ing periodic tasks (a related example of which is [122]). Xu et al. [150] performed
an analysis of tail latencies on EC2, and discuss how scheduling intricacies of the
Xen virtualization hypervisor leads to latency variability. Their measurement study
shows that co-scheduling of latency-sensitive and CPU-bound tasks can inflate tail
latencies by factors between two and four. In a study of production workflows in
Bing, Jalaparti et al. [88] point out performance variability due to hardware-related
issues (a subset of machines consistently exhibiting higher service times), sporadic
congestion events, time-dependent events such as rolling upgrades throughout a clus-
ter, and input data related issues wherein requests accessing a specific part of the

25

www.manaraa.com

Chapter 2 Warehouse scale computing: background, challenges and objectives

—~1.00

o

~

ol
L

99th percentile
== 99.9th percentile
99.99th percentile

Queries bottlenecked by
tail-latency of leaf servers (%
o o
o 3

bt

o

S
L

0 250 500 750 1000
Fanout size

Figure 2.1: Fraction of queries that will be dominated by tail latency of individual
leaf servers as a function of fanout size. 63% of queries with a fanout size
of 100 will experience latencies higher than the 99th percentile latency
of individual leaf servers. (Reproduced from [62])

search index were slower. In a large-scale study of disk and SSD performance over 87
days, Hao et al. [84] show that storage performance instability is commonplace: disk
and SSD based RAIDs suffer from at least one slow drive (that affects tail latencies)
1.5% and 2.2% of the time respectively. Chronos [94] discusses latency spikes that
are caused by the OS network stack (NIC interactions and socket handling), ap-
plication lock contention inside the kernel, and application-layer straggler threads.
Furthermore, co-location of interactive, performance-sensitive production workloads
with batch workloads, coupled with imperfect operating system-level performance
isolation also contributes to performance variability [93,142]. In the context of big
data analytics stacks built using memory-managed languages (such as Java), Ionel
et al. [75] show how garbage collection increases the run time of data processing jobs
by up to 40%. Similarly, Maas et al. [99] show how GC pauses in an Apache Spark
cluster compromise job completion times by up to 15%.

2.6.2 Request processing involves tens to thousands of servers

A common architectural pattern in the way online services are built today is to
have large request fanouts, wherein a single service-level request triggers tens to
thousands of sub-operations in parallel [62]. Typically, this happens via a root server
aggregating responses from a large number of leaf nodes: all these sub-operations

26

www.manaraa.com

2.6 Challenges to predictable performance in WSCs

must complete for the parent request to make progress. Similarly, cloud storage
systems typically support batch queries that request several records in parallel.

While fanouts are one dimension of the problem, service-level requests may also
require sequences of processing involving several stages. This is further exacerbated
by the recent trend towards architecting large application- and cluster-level systems
as micro-services and service-oriented architectures (SOA). For instance, the web-
search workflow in the Bing SOA involves multiple tiers (such as a document lookup
tier, spell-checking and snippet generation) which are accessed in a sequence for
even a single request [88]. Each of these tiers further triggers large request fanouts
as well. For instance, the median request in the Bing SOA requires processing
across sequences of 15 tiers and 10% of these tiers process a query in parallel across
thousands of servers [88].

2.6.3 Performance variability exacerbates at scale

We illustrate how performance variability at the level of individual servers affect end-
to-end performance at scale using the simple, idealized model from [62]. Consider
the classic web service setting wherein a service-level request arriving at an appli-
cation server triggers a single lookup request to a database server. Assume that
a fraction of requests p to the database server experience a high-latency episode
due to background activity (such as a garbage collection pause). If p = 1%, 1 in a
100 requests made to the database will be slow. In effect, an equivalent fraction of
service-level requests will experience higher than usual latencies.

Now consider the kind of setting described in Section 2.6.2, wherein we have large
request fanouts. Here, a single service-level request at an application server triggers f
requests in parallel to f different database servers. The overall service-level latency
now depends on the slowest of the f parallel requests. Because of this property,
sporadic component-level performance variability bottlenecks a significant fraction
of queries in the presence of large request-fanouts. To see why, assume again that a
fraction of requests p to each individual database server experiences a high-latency
episode. The overall service-level latency will be high if even a single request out of
the f parallel requests hits a slow server. The probability for such an event occurring
depends on the values of p and f, and is given by:

P(Latency(Q) > p'" percentile latency of leaf servers) = (1 — (p)7)

According to this equation, with a fanout size of 100 requests, 63% of queries will
experience response times greater than or equal to the 99th percentile latency of the
individual leaf servers. Figure 2.1 visually represents this probability as a function
of the fanout size for the 99th, 99.9th and 99.99th percentile latencies.

A similar line of reasoning holds when service-level requests require processing across
sequences of stages as described in the previous section.

27

www.manaraa.com

Chapter 2 Warehouse scale computing: background, challenges and objectives

To summarize, as service-level requests need to traverse multiple tiers of processing,
each of which can have high request fanouts, performance fluctuations at individual
servers significantly impact end-to-end performance.

2.7 Goal: Short-term adaptations to performance variability
for online services

The central theme of this thesis is the following: what adaptive mechanisms can
distributed systems typical of WSCs today employ to be robust in the face of per-
formance fluctuations that individual servers experience?

In light of that, there are two broad classes of mechanisms to cope with performance
variability: short-term adaptations and long-term adaptations [62].

e Short-term adaptations. These techniques typically operate at very short
timescales of milliseconds to tens of milliseconds, or at the granularity of each
individual request. These approaches typically work with already provisioned
resources and servers in a system (as opposed to spawning new server instances
dynamically). Examples of such approaches include duplicating/re-issuing re-
quests [62,143], or performing adaptive replica selection and resource schedul-
ing [126].

e Long-term adaptations. These techniques react to coarser-grained phe-
nomena, such as re-balancing data partitions in response to persistent work-
load skews [62], or consistent cross-application interference in the case of co-
located workloads [140]. The class of solutions that provision new hardware
resources/capacity in the system based on predictive models fall into this cat-
egory [131].

Goal. In this thesis, we will focus on designing short-term adaptation techniques for
online, interactive services (as opposed to offline batch services). The key constraint
we impose on the solution space is practicality. This means that we desire solutions
that operate on minimal assumptions about the nature of the workload. Further-
more, we do not assume a-priori knowledge about system behavior based on models
developed offline (such as the optimization-framework approach used by [88]).

2.8 System types considered in this thesis

In the previous sections, we presented a high-level overview of the kinds of systems
permeating WSCs, and prior work targeting performance predictability in the con-
text of different system types. In this thesis, we will focus on two important classes
of distributed systems present in WSCs, namely distributed data-stores and micro-
services. We now present some relevant background on these system types before
concluding the chapter.

28

www.manaraa.com

2.8 System types considered in this thesis

2.8.1 Cloud data stores

Storage systems are often in the critical path of any application-level software. In
fact, several online services rely on a mix of different storage backends, with each
geared for different workloads. For instance, a page-load by a Facebook user will ag-
gregate responses from TAO [141], Memcached [17], Haystack [45] and f4 [106].
Application-level software require low-latencies and high throughput from these
data-stores in order to support the tens to hundreds of millions of users of the
respective online service.

These data-stores come in a wide-variety of flavors, each of them typically special-
ized towards specific workloads. Block storage systems typically store and serve
Binary Large Objects (blobs) of data. These blobs are either stored unstructured
as in Facebook’s Haystack [45] and f4 [106], or in organized hierarchically as in
GFS/Colossus [73] and HDFS [83]). Other storage systems store structured data
(typically organized as tables), examples of which include BigTable [52], HBase [7],
Spanner [59], TAO [141], and Cassandra [5]). More generally, a plethora of systems
fall under the banner of NoSQL data-stores, some examples of which are Mon-
goDB [18], and Amazon’s Dynamo DB [63]). In-memory data stores are often used
as caches and to store ephemeral data in large online services, such as session state.
This includes systems such as Memcached [17], and Redis [21]. Lastly, a lot of organi-
zations also use traditional relational databases, such as MySQL [28]. Evidence also
exists for building large clusters of MySQL instances and handling data-sharding,
request routing and aggregation at the application layer [69].

Some salient characteristics of the environment in which these systems are used
are:

e Use of replication for availability and performance: for reasons of fault-
tolerance, data is typically replicated across multiple storage nodes. Replica-
tion factors in such settings are typically low (3 is a common value within
a data-center). Furthermore, many workloads typical of online services tend
to be read-mostly [49,92]. This allows clients or middleware to exploit the
combined read capacities of multiple replica servers and thus take advantage
of replication for performance reasons as well.

e High fan-ins and fanouts: Given the push towards micro-services, and a
large number of application servers, it has become common for data-stores
to have high-fanins from many clients. Given the lack of centralized request
dispatching, these requests often go directly from the client to the storage
node that dispatches the responses. Furthermore, as discussed in § 2.6.2, high
request fanouts are commonplace [62,148]. In such workloads, clients need to
operate upon queries that involve reads to multiple keys, each of which may
hit different nodes.

29

www.manaraa.com

Chapter 2 Warehouse scale computing: background, challenges and objectives

Quoted verbatim from [151]:

e All teams will henceforth expose their data and functionality
through service interfaces.

e Teams must communicate with each other through these interfaces.

e There will be no other form of inter-process communication allowed:
no direct linking, no direct reads of another team’s data store, no
shared-memory model, no back-doors whatsoever. The only com-
munication allowed is via service interface calls over the network.

e It doesn’t matter what technology they use. HTTP, Corba, Pub-
Sub, custom protocols — doesn’t matter.

e All service interfaces, without exception, must be designed from the
ground up to be externalizable. That is to say, the team must plan
and design to be able to expose the interface to developers in the
outside world. No exceptions.

Figure 2.2: The SOA mandate from Steve Yegge’s Google+ post [151]

e Lack of centralized request scheduling: Data-stores in the critical path of
online-services, wherein low-latency reads are necessary, often eschew central-
ized request scheduling for scalability reasons. This lack of centralized request
scheduling means a single, consistent, global view of how all outstanding re-
quests have been assigned to storage nodes does not exist.

2.8.2 Service-oriented architectures and micro-services

Given stringent performance and availability requirements, applications deployed on
WSCs are typically built as distributed systems comprising multiple tiers of loosely
coupled, communicating clusters of processes. In such service-oriented architectures,
a large distributed application is broken down into modular and reusable compo-
nents. In 2011, Steve Yegge accidentally leaked a controversial Google+ post where
he discusses an alleged mandate from Jeff Bezos in 2002 to all Amazon engineers.
This mandate serves as a useful anecdote that highlights the core ideas behind using
SOAs (Figure 2.2).

Service-oriented architectures stress re-usability and loose-coupling. They enable
organizations to scale out developer effort, with each team responsible for a single
service (or a few at most). This is done by ensuring that each service is exposed
using well defined APIs, accessible over a wide array of transports such as HTTP.
Thus, a service A that depends on a service B simply invokes B’s external APIs over

30

www.manaraa.com

2.9 Summary

the network. This allows developer teams to evolve their respective code bases more
quickly than is otherwise possible with large software monoliths.

A trend in this space is on keeping individual services leaner, leading to micro-
services. In the micro-services approach, a single complex application may be com-
prised of tens to hundreds of smaller services, each of which are clusters of servers on
their own. Several companies have adopted the micro-services approach, including
Netflix [109,113], SoundCloud [128], Spotify [32], Uber [138], and Amazon [105]. The
micro-services approach to building systems is not only evident at the application-
level (as in the Bing SOA [88] and all the examples listed above), but also at the
cluster-level. For instance, the Kubernetes [15] architecture comprises a core that
exposes APIs around which cluster management logic is built as a collection of
micro-services [142].

The salient characteristics of SOAs and micro-services of interest in this thesis are
as follows:

e Large number of services: Micro-services from different organizations easily
involve 10s to 100s of independent services [109,113]. Each of these services
may be realized by tens to thousands of servers [88].

e Complex execution DAGs: A single external request to a system built
as a micro-service triggers requests and responses between different services.
In the Bing SOA, the median request involves sequences of 15 services (e.g.
snippet generation and spell checking), and 10% of services involve aggregating
responses from up to 10 other services [88].

e Diverse processing times across stages: A key characteristic of the micro-
services setting is that processing times and throughputs of different service
tiers may be vastly different between each other. This complicates end-to-end
performance engineering for different types of requests [88,90].

2.9 Summary

In this chapter, we presented the necessary background for this thesis. We introduced
warehouse-scale computers and their historical background. We gave an overview of
the scale-out distributed systems that permeate the data-center landscape. Next, we
outlined the key obstacles in the way of achieving predictable performance for these
distributed systems: namely, performance variability at the granularity of individual
servers and components, as well as how this variability is amplified at scale. Next,
we laid out the design space of solutions we consider within this thesis: short-term
adaptations in the context of online, interactive services. Lastly, we presented the
necessary background on cloud data-stores as well as SOAs/Micro-services, the two
classes of distributed systems we will focus on in this thesis.

31

www.manaraa.com

www.manharaa.com

Related work

In this section, we present an overview of approaches related to work presented in
this thesis. Prior efforts around performance predictability for WSCs have focused
on different layers of the stack (across the application, cluster and platform level).
We present a broad categorization of these solutions in Figure 3.1, and will now
discuss them in detail.

ication General distributed () Tiedand hedged requests, Redundancy
Application Kwiken Valimuri et.al.

systems
level

Power-of-two B el
Pulsar Retro, Zoolander, choices gl .
Cake D-SPTF load balancing, el Ytlcs
CosTLO specific
Storage i Tetris, Jockey, Hawk
Cluster .g Plsces', P{\RDz}, Stout, Y;
specific PriorityMeister
level
mClock, IOFlow, BAA airCloud Varys, Aalo
Platform Network DRFQ, Baraat, Orchestra,
specific QJump, D3, Silo, pFabric, PDQ,
level P ElasticSwitch

Figure 3.1: Categorization of related work on performance predictability

33

www.manharaa.com

Chapter 3 Related work

3.1 Using redundancy to mitigate outliers

Dean and Barroso [62] described techniques employed at Google to tolerate latency
variability. They discuss short-term adaptations in the form of request reissues,
along with additional logic to support preemption of duplicate requests to reduce
unacceptable additional load. In D-SPTF [98], a request is forwarded to a sin-
gle server. If the server has the data in its cache, it will respond to the query.
Otherwise, the server forwards the request to all replicas, which then make use of
cross-server cancellations to reduce load as in [62]. Vulimiri et al. [143] also make
use of duplicate requests. They formalize the different threshold points at which
using redundancy aids in minimizing the tail. In the context of Microsoft Azure and
Amazon S3, CosTLO [148] also presents the efficacy of duplicate requests in coping
with performance variability. Kwiken [88] decomposes the problem of minimizing
end-to-end latency over a processing DAG into a manageable optimization over in-
dividual stages, wherein one of the latency reduction techniques used at each stage
is request reissues. Zoolander [131] is a key-value store that uses replication to mask
response times from outliers. It uses an analytical model to scale out via replication
when system resources are under-utilized, and reverts to scaling out via traditional
approaches during periods of heavy-utilization.

All the above approaches propose the use of additional system resources in order
to mitigate outliers. The use of redundant requests serves to protect against out-
liers, but presents a trade-off between reducing tail-latency and improving system
throughput. Chapter 4 instead raises the question of how to select replica servers,
a first-order concern that is not addressed by the above discussed works. We show
that replica selection does not involve a similar latency-throughput trade-off. Rel-
evant literature on replica selection includes the work by Mitzenmacher [104], who
showed that allowing a client to choose between two randomly selected servers based
on queue lengths exponentially improves load-balancing performance over a uniform
random scheme (discussed further in Chapter 4). This approach is embodied within
systems such as Sparrow [116], which, however, operate in an offline cluster comput-
ing setting where jobs run on the order of several hundreds of milliseconds, if not
minutes and hours. Chapter 4 instead presents the challenge of replica selection in
the context of low-latency data stores that are typically in the critical path of web
serving workloads.

3.2 Resource allocation and scheduling for storage systems

Pisces [126] is a multi-tenant key-value store architecture that provides fairness
guarantees between tenants. It is concerned with fair-sharing the data-store and
presenting proportional performances to different tenants. Pisces [126] recognizes
the problem of weighted replica selection and employs a round robin algorithm.
PARDA [79] is also focused on the problem of sharing storage bandwidth according
to proportional-share fairness. Stout [101] uses congestion control to respond to

34

www.manaraa.com

3.3 Resource allocation and scheduling for general distributed systems

storage-layer performance variability by adaptively batching requests. PriorityMeis-
ter [154] focuses on providing tail latency QoS for bursty workloads in shared net-
worked storage by combining priorities and rate limiters. mClock [80] discusses I/O
resource allocation inside a hypervisor. The proposed technique supports proportional-
share fairness across virtual machines using mechanisms such as reservations, shares
and limits. That is, each VM receives a resource allocation according to its share,
subject to its reservation and limits. PARDA [79] adopts a flow-control approach to
achieving proportional allocation of resources in a distributed storage setting without
support from the storage array itself. PARDA leverages latency measurements to
detect overload, and uses a FAST-TCP [146] inspired control mechanism to regulate
the number of 10 requests issued per storage client accordingly. IOFlow [135] uses
a logically centralized architecture to dictate service and routing properties for 10
requests that traverse the multiple layers between VMs and a storage backend. Us-
ing these “data plane” hooks, a centralized controller enforces various policies such
as differentiated treatment, and minimum bandwidth guarantees. Wang et al. [145]
discusses fair resource allocation across storage clients when accessing multi-tiered
storage systems composed of heterogenous devices.

The above literature does not directly address the concern of adapting to perfor-
mance variability, and are orthogonal to the work presented in Chapter 4. Chapter 4
subsequently compares against the round-robin replica selection scheme proposed by
Pisces [126].

3.3 Resource allocation and scheduling for general
distributed systems

Beyond storage specific solutions (§ 3.2), solutions have been proposed for general
distributed systems. Retro [100] proposes a centralized controller for distributed
systems, which adjusts rates of different workflows to achieve global performance
objectives. Using periodic reports of resource usage by different tenants (or more
generally, workflows), Retro’s controller applies various policies to determine rate-
limits for different workflows at various control points throughout the system (which
will then regulate the load at the overloaded resources). Pulsar [38] provides an
abstraction of a virtual datacenter where a tenant runs on VMs and accesses several
appliances. A centralized scheduler allocates rates which are then enforced at the
level of network flows. Pulsar treats each appliance as a blackbox and regulates
rates for different tenants based on periodically collected statistics about the load
at each appliance and whether each tenant is meeting their desired performance
objectives. Chapter 5 instead presents a fully distributed architecture, and thus
avoids scalability bottlenecks latent in a centralized approach.

Cake [144] makes use of coordinated, multi-resource scheduling for HBase/HDFS
with the goal of achieving both high throughput and bounded latencies. Cake uses
two levels of schedulers: first-level schedulers that schedule access to individual

35

www.manaraa.com

Chapter 3 Related work

resources and second-level schedulers which run a slower-timescale feedback loop
that adjusts resource allocations at the first-level schedulers with the objective of
maximizing SLO compliance and system utilization. In the specific context of solu-
tions for distributed storage systems (discussed above in section 3.2): mClock [80],
PARDA [79], Pisces [126], IOFlow [135], Wang et al. [145] provide high-level schedul-
ing policies and fair sharing; however, these systems typically consider a two-tiered
system with clients and servers instead of a general DAG.

Chapter 5 instead discusses resource allocation and scheduling in the context of
more general distributed systems architected as service-oriented architectures and
micro-services. Lastly, Kwiken [88] considers interactive systems where requests
execute in a DAG of services and tunes the request retry timeouts to achieve the
best trade-off between resource usage and tail latency. Unlike Kwiken, the work
presented in Chapter 5 does not involve training and building an offline model of
system behaviors. Our work extends beyond Kwiken by addressing challenges of
multi-tenancy and distributed resource management.

3.4 Offline, cluster computing

Predictable performance in the context of offline cluster has been an active research
area. Systems such as LATE [153] and Mantri [37] have looked at the problem of
skew-tolerance, wherein straggler tasks in data-parallel applications can delay the
overall job completion time. These systems rely on task retries (§ 3.1) in order to
handle outliers. Another angle of attack has been on resource allocation and schedul-
ing, typically informed via pre-computed models of job characteristics. Jockey [71]
precomputes statistics using a simulator, which is informed about a job’s charac-
teristics, in order to predict the completion time of the job. Tetris [76] uses prior
knowledge of a job’s characteristics to compute heuristics with which to perform
multi-resource packing of jobs on a cluster. Hawk [64] addresses the challenge of
short jobs faring poorly due to competition for resources with large jobs. Hawk
instead proposes a hybrid scheduling approach, where short jobs are scheduled in a
fully distributed way, and long jobs are scheduled using a centralized scheduler.

Chapter 4 and Chapter 5 instead focuses on challenges for interactive online services,
wherein request processing occurs at much shorter timescales than in offline batch
processing systems.

3.5 Data-center networking

Lastly, a lot of research efforts have focused on predictable performance with re-
gards to the data-center network that supports WSCs. With the flexibility allowed
in designing data center networks, several recent works have focused on resource
allocation and scheduling problems related to quickly completing one or multiple
transfers (e.g., Varys [56], Aalo [54], Baraat [66], Orchestra [55]), achieving low

36

www.manaraa.com

3.6 Summary

latency (e.g., Qjump [78], D3 [147], Silo [89], pFabric [36], PDQ [87]) and fairly
sharing the network bandwidth (e.g., FairCloud [118], ElasticSwitch [119]). We be-
lieve that these approaches are orthogonal to the solutions proposed in this thesis,
which operate at the application layer.

3.6 Summary

In this chaper, we discussed the landscape of solutions that focused on performance
predictability in the context of WSCs. We classified these approaches according
to the specific layer of the WSC stack that they target, the classes of distributed
systems for which they apply, as well as the techniques used to achieve predictable
performance. We then positioned the work in this thesis with respect to the literature
discussed above.

37

www.manharaa.com

www.manharaa.com

Reducing tail-latency for cloud
data-stores

In this chapter, we raise the question of performance predictability in the context
of cloud data-stores, distributed systems that are often in the critical path of every
online service today [63]. We then make the case for adaptive replica selection as a
means to address server-side performance fluctuations in cloud data-stores.

Several studies [62,88,150] indicate that latency distributions in Internet-scale sys-
tems exhibit long-tail behaviors. That is, the 99.9"" percentile latency can be
more than an order of magnitude higher than the median latency. Recent ef-
forts [35,62,71,88,116,131,154] have thus proposed approaches to reduce tail latencies
and lower the impact of skewed performance. These approaches rely on standard
techniques including giving preferential resource allocations or guarantees, reissuing
requests, trading off completeness for latency, and creating performance models to
predict stragglers in the system.

A recurring pattern to reducing tail latency is to exploit the redundancy built into
each tier of the application architecture. In this chapter, we show that the problem
of replica selection — wherein a client node has to make a choice about selecting one
out of multiple replica servers to serve a request — is a first-order concern in this
context. Interestingly, we find that the impact of the replica selection algorithm has
often been overlooked. We argue that layering approaches like request duplication
and reissues atop a poorly performing replica selection algorithm should be cause
for concern. For example, reissuing requests but selecting poorly-performing nodes
to process them increases system utilization [143] in exchange for limited benefits.

39

www.manaraa.com

Chapter 4 Reducing tail-latency for cloud data-stores

As we show in Section 4.1, the replica selection strategy has a direct effect on the
tail of the latency distribution. This is particularly so in the context of data stores
that rely on replication and partitioning for scalability, such as key-value stores.
The performance of these systems is influenced by many sources of variability [62,
95] and running such systems in cloud environments, where utilization should be
high and environmental uncertainty is a fact of life, further aggravates performance
fluctuations [93].

Replica selection can compensate for these conditions by preferring faster replica
servers whenever possible. However, this is made challenging by the fact that servers
exhibit performance fluctuations over time. Hence, replica selection needs to quickly
adapt to changing system dynamics. On the other hand, any reactive scheme in
this context must avoid entering pathological behaviors that lead to load imbalance
among nodes and oscillating instabilities. In addition, replica selection should not
be computationally costly, nor require significant coordination overheads.

In this chapter, we present C3, an adaptive replica selection mechanism that is
robust in the face of fluctuations in system performance. At the core of C3’s design,
two key concepts allow it to reduce tail latencies and hence improve performance
predictability. First, using simple and inexpensive feedback from servers, clients
make use of a replica ranking function to prefer faster servers and compensate for
slower service times, all while ensuring that the system does not enter herd behaviors
or load-oscillations. Second, in C3, clients implement a distributed rate control
mechanism to ensure that, even at high fan-ins, clients do not overwhelm individual
servers. The combination of these mechanisms enable C3 to reduce queuing delays
at servers while the system remains reactive to variations in service times.

Our study applies to any low-latency data store wherein replica diversity is available,
such as a key-value store. We hence base our study on the widely-used [12] Cassandra
distributed database [5], which is designed to store and serve larger-than-memory
datasets. Cassandra powers a variety of applications at large web sites such as
Netflix and eBay [6]. Compared to other related systems (Table 4.1), Cassandra
implements a more sophisticated load-based replica selection mechanism as well,
and is thus a better reference point for our study. However, C3 is applicable to
other systems and environments that need to exploit replica diversity in the face
of performance variability, such as a typical multi-tiered application or other data
stores such as MongoDB or Riak.

In summary, we make the following contributions:

1. Through performance evaluations on Amazon EC2, we expose the fundamen-
tal challenges involved in managing tail latencies in the face of service time
variability (§4.1).

2. We develop an adaptive replica selection mechanism, C3, that reduces the
latency tail in the presence of service time fluctuations in the system. C3 does

40

www.manaraa.com

4.1 The Challenge of Replica Selection

Cassandra Dynamic Snitching: considers history of
read latencies and I/0 load

OpenStack Swift | Read from a single node and

retry in case of failures

MongoDB Optionally select nearest node by network
latency (does not include CPU or I/0O load)
Riak Recommendation is to use an external

load balancer such as Nginx [16]

Table 4.1: Replica selection mechanisms in popular NoSQL solutions. Only Cassan-
dra employs a form of adaptive replica selection (§4.1.3).

not make use of request reissues, and only relies on minimal and approximate
information exchange between clients and servers (§4.2).

3. We implement C3 (§4.3) in the Cassandra distributed database and evaluate
it through experiments conducted on Amazon EC2 (for accuracy) (§4.4) and
simulations (for scale) (§4.4.2). We demonstrate that our solution improves
Cassandra’s latency profile along the mean, median, and the tail (by up to a
factor of 3 at the 99.9"" percentile) whilst improving read throughput by up to
50%. Furthermore, we also present results of running C3 against production
workloads from SoundCloud and Spotify.

The rest of the chapter is organized as follows. Section 4.1 motivates the need for
adaptive replica selection and outlines the challenges involved. Section 4.2 explains
C3’s design and its components. Section 4.3 discusses the implementation of C3
within the Cassandra distributed database. In Section 4.4, we evaluate C3 under
various conditions. Section 4.5 presents a closing discussion of our work, including
open questions. Section 4.6 concludes the chapter.

4.1 The Challenge of Replica Selection
In this section, we first discuss the problem of time-varying performance variability

in the context of cloud environments. We then underline the need for load-based
replica selection schemes and the challenges associated with designing them.

4.1.1 Performance fluctuations are the norm

Servers in cloud environments routinely experience performance fluctuations due to
a multitude of reasons. Citing experiences at Google, Dean and Barroso [62] list
many sources of latency variability that occur in practice. Their list includes, but is
not limited to, contention for shared resources within different parts of and between

41

www.manaraa.com

Chapter 4 Reducing tail-latency for cloud data-stores

Request 1/u = 4ms Request 1/ = 4ms
S 1 i ’
e erver . Server
LT 5, [TImm; =*x
S Server Server
[T} =5 1 =%
1/p =10ms 1/p = 10ms
LOR strategy Ideal allocation
(Max Latency = 60ms) (Max Latency = 36ms)

Figure 4.1: Left: how the least-outstanding requests (LOR) strategy allocates a
burst of requests across two servers when executed individually by each
client. Right: An ideal allocation that compensates for higher services
time with lower queue lengths.

applications (further discussed in [93]), periodic garbage collection, maintenance
activities (such as log compaction), and background daemons performing periodic
tasks [122]. Recently, an experimental study of response times on Amazon EC2 [150]
illustrated that long tails in latency distribution can also be exacerbated by virtual-
ization. A study [88] of interactive services at Microsoft Bing found that over 30% of
analyzed services have 95" percentile of latency 3 times their median latency. Their
analysis showed that a major cause for the high service performance variability is
that latency varies greatly across machines and time. Lastly, a common workflow
involves accessing large volumes of data from a data store to serve as inputs for
batch jobs on large-scale computing platforms such as Hadoop, and injecting results
back into the data store [132]. These workloads can introduce latency spikes at the
data store and further impact on end-user delays.

As part of our study, we spoke with engineers at Spotify and SoundCloud, two com-
panies that use and operate large Cassandra clusters in production. Our discussions
further confirmed that all of the above mentioned causes of performance variability
are true pain points. Even in well provisioned clusters, unpredictable events such
as garbage collection on individual hosts can lead to latency spikes. Furthermore,
Cassandra nodes periodically perform compaction, wherein a node merges multiple
SSTables [5,52] (the on-disk representation of the stored data) to minimize the num-
ber of SSTable files to be consulted per-read, as well as to reclaim space. This leads
to significantly increased 1/0 activity.

Given the presence of time-varying performance fluctuations, many of which can
potentially occur even at sub-second timescales [62], it is important that systems
gracefully adapt to changing conditions. By exploiting server redundancy in the
system, we investigate how replica selection effectively reduces the tail latency.

42

www.manaraa.com

4.1 The Challenge of Replica Selection

4.1.2 Load-based replica selection is hard

Accommodating time-varying performance fluctuations across nodes in the system
necessitates a replica selection strategy that takes into account the load across dif-
ferent servers in the system. A strategy commonly employed by many systems is
the least-outstanding requests strategy (LOR). For each request, the client selects
the server to which it has the least number of outstanding requests. This technique
is simple to implement and does not require global system information, which may
not be available or is difficult to obtain in a scalable fashion. In fact, this is com-
monly used in load-balancing applications such as Nginx [19] (recommended as a
load-balancer for Riak [16]) or Amazon ELB [4].

However, we observe that this technique is not ideal for reducing the latency tail,
especially since many realistic workloads are skewed in practice and access patterns
change over time [41]. Consider the system in Figure 4.1, with two replica servers
that at a particular point in time have service times of 4 ms and 10 ms respectively.
Assume all three clients receive a burst of 4 requests each. Each request needs to be
forwarded to a single server. Based on purely local information, if every client selects
a server using the LOR strategy, it will result in each server receiving an equal share
of requests. This leads to a maximum latency of 60 ms, whereas an ideal allocation
in this case obtains a maximum latency of 36 ms. We note that LOR over time
will prefer faster servers, but by virtue of purely relying on local information, it
does not account for the existence of other clients with potentially bursty workloads
and skewed access patterns, and does not explicitly adapt to fast-changing service
times.

Designing distributed, adaptive and stable load-sensitive replica selection techniques
is challenging. If not carefully designed, these techniques can suffer from “herd
behavior” [103,121]. Herd behavior leads to load oscillations, wherein multiple
clients are coaxed to direct requests towards the least-loaded server, degrading the
server’s performance, which subsequently causes clients to repeat the same procedure
with a different server.

Indeed, looking at the landscape of popular data stores (Table 4.1), we find that most
systems only implement very simple schemes that have little or no ability to react
quickly to service time variations nor distribute requests in a load-sensitive fashion.
Among the systems we studied, Cassandra implements a more sophisticated strategy
called Dynamic Snitching that attempts to make replica selection decisions informed
by histories of read latencies and 1/0O loads. However, through performance analysis
of Cassandra, we find that this technique suffers from several weaknesses, which we
discuss next.

43

www.manaraa.com

Chapter 4 Reducing tail-latency for cloud data-stores

1.00

3 Load pathologies due to Dynamic Snitching

2 5007 — B : . 0.75

S E 400 - S50

o 23007 W25

3 = 200 .

g 8100+ 0.00-4==""

g 0 : T ll‘” et Vot : . P == 0 200 400 600

o 0 500 1000 1500 Requests received
Time (seconds) per 100ms

Figure 4.2: Example load oscillations seen from the most heavily utilized Cassandra
node due to Dynamic Snitching, in measurements obtained on Amazon
EC2. We show a timeseries (left) and the corresponding ECDF (right),
for the number of requests processed in a 100 ms window by the Cas-
sandra node. We note that the number of requests processed in a 100
ms window by a node ranges from 0 up to 500, which is symptomatic of
herd behavior.

4.1.3 Dynamic Snitching’s weaknesses

Cassandra servers organize themselves into a one-hop distributed hash table. A
client can contact any server for a read request. This server then acts as a coordina-
tor, and internally fetches the record from the node hosting the data. Coordinators
select the best replica for a given request using Dynamic Snitching. With Dynamic
Snitching, every Cassandra server ranks and prefers faster replicas by factoring in
read latencies to each of its peers, as well as I/O load information that each server
shares with the cluster through a gossip protocol.

Given that Dynamic Snitching is load-based, we evaluate it to characterize how it
manages tail-latencies and if it is subject to entering load-oscillations. Indeed, our
experiments on Amazon EC2 with a 15-node Cassandra cluster confirm this (the
details of the experimental setup are described in § 4.4). In particular, we recorded
heavy-tailed latency characteristics wherein the difference between the 99.9"* per-
centile latencies are up to 10 times that of the median. Furthermore, we recorded
the number of read requests individual Cassandra nodes serviced in 100 ms intervals.
For every run, we observed the node that contributed most to the overall through-
put. These nodes consistently exhibited synchronized load oscillations, example
sequences of which are shown in Figure 4.2. Additionally, we confirmed our results
with the Spotify engineers, who have also encountered load instabilities that arise
due to garbage-collection induced performance fluctuations in the system [96].

A key reason for Dynamic Snitching’s vulnerability to oscillations is that each Cas-
sandra node re-computes scores for its peers at fixed, discrete intervals. This interval
based scheme poses two problems. First, the system cannot react to time-varying
performance fluctuations among peers that occur at time-scales less than the fixed-

44

www.manaraa.com

4.2 C3 Design

Application C3 Clients
= - Server |
Request i A :
' Server
Response H E

Figure 4.3: Overview of C3. RS: Replica Selection scheduler, RL: Rate Limiter of
server s € [A, BJ.

interval used for the score recomputation. Second, by virtue of fixing a choice over a
discrete time interval (100 ms by default), the system risks synchronization as seen
in Figure 4.2. While one may argue that this can be overcome by shortening the
interval itself, the calculation performed to compute the scores is expensive, as it is
also stated explicitly in the source code; a median over a history of exponentially
weighted latency samples (that is reset only every 10 minutes) has to be computed
for each node as part of the scoring process. Additionally, Dynamic Snitching re-
lies on gossiping one second averages of iowait information between nodes to aid
with the ranking procedure (the intuition being that nodes can avoid peers who are
performing compaction). These iowait measurements influence the scores used for
ranking peers heavily (up to two orders of magnitude more influence than latency
measurements). Thus, an external or internal perturbation in I/O activity can influ-
ence a Cassandra node’s replica selection loop for extended intervals. Together with
the synchronization-prone behavior of having a periodically updated ranking, this
can lead to poor replica selection decisions that degrade system performance.

4.2 C3 Design

C3 is an adaptive replica selection mechanism designed with the objective of re-
ducing tail latency. Based on the considerations in Section 4.1, we design C3 while
keeping in mind these two goals:

i) Adaptive: Replica selection must cope and quickly react to heterogeneous and
time-varying service times across servers.

i1) Well-behaved: Clients performing replica selection must avoid herd behaviors
where a large number of clients concentrate requests towards a fast server.

At the core of C3’s design are the two following components that allow it to satisfy
the above properties:

1. Replica Ranking: Using minimal and approximate feedback from individual
servers, clients rank and prefer servers according to a scoring function. The

45

www.manaraa.com

Chapter 4 Reducing tail-latency for cloud data-stores

scoring function factors in the existence of multiple clients and the subsequent
risk of herd behavior, whilst allowing clients to prefer faster servers.

2. Distributed Rate Control and Backpressure: Every client rate limits
requests destined to each server, adapting these rates in a fully-distributed
manner using a congestion-control inspired technique [82]. When rate limits
of all candidate servers for a request are exceeded, clients retain requests in a
backlog queue until at least one server is within its rate limit again.

4.2.1 Replica ranking

With replica ranking, clients individually rank servers according to a scoring func-
tion, with the scores serving as a proxy for the latency to expect from the corre-
sponding server. Clients then use these scores to prefer faster servers (lower scores)
for each request. To reduce tail latency, we aim to minimize the product of queue
size (gs) and service time (1/us, the inverse of the service rate) across every server
s (Figure 4.1).

Delayed and approximate feedback. In C3, servers relay feedback about their
respective ¢s and 1/ps on each response to a client. The ¢ is recorded after the re-
quest has been serviced and the response is about to be dispatched. Clients maintain
Exponentially Weighted Moving Averages (EWMA) of these metrics to smoothen
the signal. We refer to these smoothed values as ¢ and is.

Accounting for uncertainty and concurrency. The delayed feedback from the
servers lends clients only an approximate view of the load across the servers and is
not sufficient by itself. Such a view is oblivious to the existence of other clients in
the system, as well as the number of requests that are potentially in flight, and is
thus prone to herd behaviors. It is therefore imperative that clients account for this
potential concurrency in their estimation of each server’s queue size.

For each server s, a client maintains an instantaneous count of its outstanding re-
quests oss (requests for which a response is yet to be received). Clients calculate the
queue size estimate (Gs) of each server as ¢s = 1+ 085 - w + 5, where w >=11is a
weight parameter. We refer to the oss - w term as the concurrency compensation.

The intuition behind the concurrency compensation term is that a client will always
extrapolate the queue size of a server by an estimated number of requests in flight.
That is, it will account for the fan in from multiple clients concurrently submitting
requests to the same server. Furthermore, clients with a higher value of oss will
implicitly project a higher queue size at s and thus rank it lower than a client that
has sent fewer requests to s. Using this queue size estimate to project the s/ /s
ratio results in a desirable effect: a client with a higher demand will be more likely
to rank s poorly compared to a client with a lighter demand. This hence provides a
degree of robustness to synchronization. In our experiments, we set w to the number

46

www.manaraa.com

4.2 C3 Design

A AN3
2000+ K 5e¢+05 o a
o 1/u=20ms K o 1/u=20ms 2
15004 & 1/u=4ms ann 4e+05- & 1/p=4ms o o
s -
) ° a
o . © 3e+05 £
S 1000 - 8 &
n ° 0 2e+05 - &
o Srnnnees £
- Dn nﬂ. oy
500 u“?.--.-.--.--.-.--A.A-A-A.A-A.A-A-A.N 1e+05 4 & &
o0 ! an A2BABOAE L -
_| gaa Aaanasass 0e+00
0 1 1 1 1 1 e+ 1 1 1 1 1 1
0 25 50 75 100 0 10 20 30 40 50
Queue Size Estimate Queue Size Estimate

Figure 4.4: A comparison between linear (left) and cubic (right) scoring functions.
For differing values of 1/, the difference in queue size estimates required
for the scores of two replicas to be equal is smaller for the cubic function
(thus penalizing longer queues).

of clients in the system. This serves as a good approximation in settings where the
number of clients is comparable to the expected queue lengths at the servers.

Penalizing long queues. With the above estimation, clients can compute the
ds/fis ratio of each server and rank them accordingly. However, given the existence
of multiple clients and time-varying service times, a function linear in ¢ is not an
effective scoring function for replica ranking. To see why, consider the example in
Figure 4.4. The figure shows how clients would score two servers using a linear
function: here, the service time estimates are 4 ms and 20 ms, respectively. We
observe that under a linear scoring regime, for a queue size estimate of 20 at the
slower server, only a corresponding value of 100 at the faster server would cause a
client to prefer the slower server again. If clients distribute requests by choosing
the best replica according to this scoring function, they will build up and maintain
long queues at the faster server in order to balance response times between the two
nodes.

However, if the service time of the faster server increases due to an unpredictable
event such as a garbage collection pause, all requests in its queue will incur higher
waiting times. To alleviate this, C3’s scoring function penalizes longer queue lengths
using the same intuition behind that of delay costs as in [47,139]. That is, we use
a non-decreasing convex function of the queue size estimate in the scoring function
to penalize longer queues. We achieve this by raising the §s term in the scoring
function to a higher degree, b: ({s)®/ts.

Returning to the above example, this means the scoring function will treat the
above two servers as being of equal score if the queue size estimate of the faster
server (1/p = 4 ms) is {/20/4 times that of the slower server (1/u = 20 ms).
For higher values of b, clients will be less greedy about preferring a server with

47

www.manaraa.com

Chapter 4 Reducing tail-latency for cloud data-stores

a lower u~!. We use b = 3 to have a cubic scoring function (Figure 4.4), which

presents a good trade-off between clients preferring faster servers and providing
enough robustness to time-varying service times. We evaluate the sensitivity of this
parameter in Section 4.4.2.

Cubic replica selection. In summary, clients use the following scoring function

for each replica: _ R _
Uy = Ry — 1/ + (35)°/ 13

where s = 1 + 0s; - n + §5 is the queue size estimation term, oss is the number of
outstanding requests from the client to s, n is the number of clients in the system,
and Ry, ¢s and /i, are EWMASs of the response time (as witnessed by the client),1
queue size and service time feedback received from server s, respectively. The score
reduces to Rs when the queue size estimate term of the server is 1 (which can only
occur if the client has no outstanding requests to s and the queue size feedback is
zero). Note that the Rg — ! term’s contribution to the score diminishes quickly
when the client has a non-zero queue size estimate (see Figure 4.4).

4.2.2 Rate control and backpressure

Replica selection allows clients to prefer faster servers. However, replica selection
alone cannot ensure that the combined demands of all clients on a single server
remain within that server’s capacity. Exceeding capacity increases queuing on the
server-side and reduces the system’s reactivity to time-varying performance fluctu-
ations. Thus, we introduce an element of rate-control to the system, wherein every
client rate-limits requests to individual servers. If the rates of all candidate servers
for a request are saturated, clients retain the request in a backlog queue until a
server is within its rate limit again.

Decentralized rate control. To account for servers’ performance fluctuations,
clients need to adapt their estimations of a server’s capacity and adjust their sending
rates accordingly. As a design choice and inspired by the CUBIC congestion-control
scheme [82], we opt to use a decentralized algorithm for clients to estimate and adapt
rates across servers. That is, we avoid the need for clients to inform each other about
their demands for individual servers, or for the servers to calculate allocations for
potentially numerous clients individually. This further increases the robustness of
our system; clients’ adaptation to performance fluctuations in the system is not
purely tied to explicit feedback from the servers.

Thus, every client maintains a token-bucket based rate-limiter for each server, which
limits the number of requests sent to a server within a specified time window of § ms.
We refer to this limit as the sending-rate (srate). To adapt the rate limiter according

!Note Rs implicitly accounts for network latency but we consider that network congestion is not
the source of performance fluctuations.

48

www.manaraa.com

4.2 C3 Design

‘Cubic growth curve for rate control

— Optimistic

%))

£ Probing

1< Region

s

g

o A Saddle Region

7, L. - e F

(0]

>

o

(0]

=

o Low Rate

T Region

o
T T T T T
0 50 100 150 200

AT (ms)

Figure 4.5: Cubic function for clients to adapt their sending rates

to the perceived performance of the server, clients track the number of responses
being received from a server in a § ms interval, that is, the receive-rate (rrate). The
rate-adaptation algorithm aims to adjust srate in order to match the rrate of the
server.

Cubic rate adaptation function. Upon receiving a response from a server s,
the client compares the current srate and rrate for s. If the client’s sending rate is
lower than the receive rate, it increases its rate according to a cubic function [82]:

3
srate < - <AT— ’ (ﬁ'7R0)> + Ry

where AT is the elapsed time since the last rate-decrease event, and Ry is the “satu-
ration rate” — the rate at the time of the last rate-decrease event. If the receive-rate
is lower than the sending-rate, the client decreases its sending-rate multiplicatively
by . = represents a scaling factor and is chosen to set the desired duration of the
saddle region (see § 4.3 for the values used).

Benefits of the cubic function. While we evaluated multiple rate adaptation
functions (see § 4.4.2), we were attracted to a cubic growth function because of
its property of having a saddle region. The functioning of the cubic rate adaption
strategy caters to the following three operational regions (Figure 4.5): (1) Low-
rates: when the current sending rate is significantly lower than the saturation rate
(after say, a multiplicative decrease), the client increases the rate steeply; (2) Saddle
region: when the sending rate is close to the perceived saturation point of the server
(Ro), the client stabilizes its sending rate, and increases it conservatively, and (3)
Optimistic probing: if the client has spent enough time in the stable region, it will
again increase its rate aggressively, and thus probe for more capacity. At any time,
if the algorithm perceives itself to be exceeding the server’s capacity, it will update
its view of the server’s saturation point and multiplicatively reduce its sending rate.
The parameter v can be adjusted for a desired length of the saddle region. Lastly,

49

www.manaraa.com

Chapter 4 Reducing tail-latency for cloud data-stores

Algorithm 1 On Request Arrival (Request req, Replicas R)

1: repeat

2 R + sort(R) > sort replicas by cubic score function
3 for Server s in R do

4 if s within srates; then

5: consume_token(srates)

6 08g < 085+ 1 > update outstanding requests
7 send(req, s) > send to server s
8 return

9 if req not sent then

10: wait until token available > Backpressure

11: until req is sent

given that multiple clients may potentially be adjusting their rates simultaneously,
for stability reasons, we cap the step size of a rate increase by a parameter spyax.

4.2.3 Putting everything together

C3 combines distributed replica selection and rate control as indicated in Algorithms
1 and 2, with the control flow in the system depicted in Figure 4.3. When a request
is issued at a client, it is directed to a replica selection scheduler. The scheduler
uses the scoring function to order the subset of servers that can handle the request,
that is, the replica group (R). It then iterates through the list of replicas and
selects the first server s that is within the rate as defined by the local rate limiter
for s. If all replicas have exceeded their rate limits, the request is enqueued into a
backlog queue. The scheduler then waits until at least one replica is within its rate
before repeating the procedure. When a response for a request arrives, the client
records the feedback metrics from the server and adjusts its sending rate for that
server according to the cubic-rate adaptation mechanism. After a rate increase, a
hysteresis period is enforced (Algorithm 2, line 3) before another rate-decrease so as
to allow clients’ receive-rate measurements enough time to catch up since the last
increased sending rate at Tj,..

4.3 Implementation

We implemented C3 within Cassandra. For Cassandra’s internal read-request rout-
ing mechanism, this means that every Cassandra node is both a C3 client and server
(specifically, coordinators in Cassandra’s read path are C3 clients). In vanilla Cas-
sandra, every read request follows a synchronous chain of steps leading up to an
eventual enqueuing of the request into a per-node TCP connection buffer. For C3,
we modified this chain of steps to control the number of requests that would be

20

www.manaraa.com

4.3 C3 implementation

Algorithm 2 On Request Completion (Request req, Server s)

08s — 085 — 1 > update outstanding requests
update EWMA of ¢, pu;! feedback
if (srates > rrates; && now() — Tine > hysteresis_period) then
Ry < srates
srates <— srates - 3
Tdec — now()
else if (srates < rrates) then
AT + now() — Tyee
Tine now()

3
10: R<—7-(AT—3(@)) + Ry

11: srates <— min(srates + Smax, R)

pushed to the TCP buffers of each node. Recall that C3’s replica scoring and rate
control operate at the granularity of replica groups. Given that in Cassandra, there
are as many replica groups as nodes themselves, we need as many backpressure
queues and replica selection schedulers as there are nodes. Thus, every read request
upon arrival in the system needs to be asynchronously routed to a scheduler corre-
sponding to the request’s replica group. Lastly, when a coordinator node performs
a remote read, the server that handles the request tracks the service time of the op-
eration and the number of pending read requests in the server. This information is
piggybacked to the coordinator and serves as the feedback for the replica ranking.

There are challenges in making this implementation efficient. For one, since a sin-
gle remote peer can be part of multiple replica groups, multiple admission control
schedulers may potentially contend to push a request from their respective backpres-
sure queues towards the same endpoint. Care needs to be exercised that this does
not lead to starvation. To handle this complexity, we relied upon the Akka frame-
work [3] for message-passing concurrency (Actor based programming). With Akka,
every per-replica group scheduler is represented as a single actor, and we configured
the underlying Java thread dispatcher to fair schedule between the actors. This de-
sign of having multiple backpressure queues also increases robustness, as one replica
group entering backpressure will not affect other replica groups. The message queue
that backs each Akka actor implicitly serves as the backpressure per-replica group
queue. At roughly 600 bytes of overhead per actor, our extensions to Cassandra are
thus lightweight. Our implementation amounted to 398 lines of code.?

For the rest of our study, we set the cubic rate adaptation parameters as follows:
the multiplicative decrease parameter 3 is set to 0.2, and we configured ~ to set the
saddle region to be 100 ms long. We define the rate for each server as a number
of permissible requests per 20 ms (J), and use a hysteresis duration equal to twice

2Based on a Cassandra 2.0 development version.

o1

www.manaraa.com

Chapter 4 Reducing tail-latency for cloud data-stores

the rate interval. We cap the cubic-rate step size (Smaz) to 10. We did not conduct
an exhaustive sensitivity analysis of all system parameters, which we leave for fu-
ture work. Lastly, Cassandra uses read-repairs for anti-entropy; a fraction of read
requests will go to all replicas (10% by default). This further allows coordinators to
update their view of their peers.

4.4 System Evaluation

In evaluating C3, we are interested in answering the following questions across var-
ious conditions:

1. Does C3 improve the tail latency without sacrificing the mean or median?
2. Does C3 improve the read throughput (requests/s)?

3. How well does C3 load condition the cluster and adapt to dynamic changes in
the environment?

We evaluate C3 under several settings. First, we stress our Cassandra implementa-
tion of C3 using workloads from the Yahoo Cloud Serving Benchmark (YCSB) [58],
a closed-loop workload generator (§ 4.4.1). Next, we use simulations to study the
C3 scheme independently of the Cassandra implementation (§ 4.4.2). Lastly, we
present results conducted against production workloads at Spotify and SoundCloud
(§ 4.4.3).

4.4.1 Evaluation using synthetic benchmarks

Experimental Setup: We evaluated C3 on Amazon EC2. Our Cassandra de-
ployment comprised 15 m1.xlarge instances. We tuned the instances and Cassandra
according to the officially recommended production settings from Datastax [10] as
well as in consultation with our contacts from the industry who operate production
Cassandra clusters.

On each instance, we configured a single RAIDO0 array encompassing the four ephemeral
disks which served as Cassandra’s data folder (we also experimented on instances
with SSD storage as we report on later). We used the industry-standard Yahoo
Cloud Serving Benchmark (YCSB) [58] to generate datasets and run workloads
while stressing Cassandra in a closed-loop. We assign tokens to each Cassandra
node such that nodes own equal segments of the keyspace. Cassandra’s replication
factor was set to 3. We inserted 500 million 1KB-sized records generated by YCSB,
which served as the dataset. The workload against the cluster was driven from three
instances of YCSB running in separate VMs, of identical EC2 instance type as the
Cassandra nodes. Each YCSB instance ran 40 request generators, for a total of 120
generators. This leads to the baseline Cassandra cluster operating at average laten-
cies of ~15ms for read requests for different workloads. Each generator has a TCP

92

www.manaraa.com

4.4 C3 Evaluation

ECDF of read latencies

Read Read Update
Heavy Only Heavy i
1.0000 - Median
Read Read Update
0.9975 A15 Heavy Only Heavy
215
[T
=) = C3
0.9950 >
8 DS g 10+
0.9925 - S 54
e)
0.9900 - 3 o-
1 1 1 1 [1 1 1 [1 1 1 1 o T T T 1 1 1
0 25 50 75 1000 25 50 75 1000 25 50 75 100 Cc3 DS C3 DS Cc3 DS
Read latency (ms) Replica Selection Strategy
95th percentile 99th percentile 99.9th percentile
Read Read Update Read Read Update Read Read Update
—_ Heavy Only Heavy —_ Heavy Only Heavy —_ Heavy Only Heavy
[7) D60 4 (%)
E30- E E 150
g g g
£20- 240 2100
2 i} 2
IH' UIHI ﬂ 0
© © ©
8 .- :,. 0 3 .. BU 0
[n'ng T T T T T T [a'ng T T T T T T [o'n T T T T T T
C3 DS C3 DS C3 DS C3 DS C3 DS C3 DS C3 DS C3 DS C3 DS
Replica Selection Strategy Replica Selection Strategy Replica Selection Strategy

Figure 4.6: Cassandra’s latency characteristics when using Dynamic Snitching and
C3. C3 significantly improves the tail latency under different workloads
without compromising the median.

connection of its own to the Cassandra cluster. Generators create requests for keys
distributed according to a Zipfian access pattern prescribed by YCSB, with Zipf
parameter p = 0.99, drawing from a set of 10 million keys. We used three common
workload patterns for Cassandra deployments to evaluate our scheme: read-heavy
(95% reads — 5% writes), update-heavy (50% reads — 50% writes) and read-only
(100% read). These workloads generate access patterns typical of photo tagging,
session-store and user-profile applications, respectively [58]. The read and update
heavy workloads in particular are popular across a variety of Cassandra deploy-
ments [68,92]. Each measurement involves 10 million operations of the workload,
and is repeated five times. Bar plots represent averages and 95th percentile confi-
dence intervals. All experiments use a read consistency level (CL) of ONE unless
noted otherwise (we also conduct experiments using QUORUM consistency). Note,
the consistency level determines the number of replicas that need to acknowledge a
request.

Impact of workload on latency: Figure 4.6 indicates the read latency character-
istics of Cassandra across different workloads when using C3 compared to Dynamic
Snitching (DS). Regardless of the workload used, C3 improves the latency across
all the considered metrics, namely, the mean, median, 99" and 99.9t" percentile
latencies. Since the ephemeral storage in our instances are backed by spinning-head

93

www.manaraa.com

Chapter 4 Reducing tail-latency for cloud data-stores

Read throughput
| Read-Heavy || Read-Only ||Update-Heavy

15000 =
10000 =
o |—:| I |_:|
0-
1 1 1 1
C3

DS c3 DS cs s
Replica Selection Strategy

Throughput (requests/second)

Figure 4.7: Throughput obtained with C3 and with Dynamic Snitching. C3 achieves
higher throughput by better utilizing the available system capacity across
replica servers.

disks, the latency increases with the amount of random disk seeks. This explains
why the read-heavy workload results in lower latencies than the read-only workload
(since the latter causes more random seeks). Furthermore, C3 effectively shortens
the ratio of tail-latencies to the median, leading to a more predictable latency profile.
With the read-heavy workload, the difference between the 99.9** percentile latency
and the median is 24.5 ms with C3, whereas with DS, it is 83.91 ms: more than 3x
improvement. In the update-heavy and read-only scenarios, C3 improves the same
difference by a factor of 2.6 each. Besides the different percentiles, C3 also improves
the mean latency by between 3 ms and 4 ms across all scenarios.

Impact of workload on read throughput: Figure 4.7 indicates the measured
throughputs for C3 versus DS. By virtue of controlling waiting times across the
replicas, C3 makes better use of the available system capacity, resulting in an in-
crease in throughput across the considered workloads. In particular, C3 improves
the throughput by between 26% and 43% across the considered workloads (update-
heavy and read-heavy workloads respectively). We also note that the difference in
throughput between the read- and update-heavy workloads of roughly 75% (across
both strategies) is consistent with publicly available Cassandra benchmark data
[68].

Impact of workload on load-conditioning: We now verify whether C3 fulfills
its design objective of avoiding load pathologies. Since the key access pattern of our
workloads are Zipfian distributed, we observe the load over time of the node that
has served the highest number of reads across each run, that is, the most heavily
utilized node. Figure 4.8 represents the distribution of the number of reads served
per 100 ms by the most heavily utilized node in the cluster across runs. Note that
despite improving the overall system throughput, the most heavily utilized node in C3
serves fewer requests than with DS. As a further confirmation of this, we present an
example load profile as produced by C3 on highly utilized nodes (Figure 4.9). Unlike
with DS, we do not see synchronized load-spikes when using C3, evidenced by the

o4

www.manaraa.com

4.4 C3 Evaluation

Load distribution on the most heavily utilized node
Read-Heavy Read-Only Update-Heavy

1.00 -

0.75 -

— C3

()
0.50 -
<L|'3 DS

0.25 -

0.00 - - -

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Number of reads served per 100ms

Range of number of reads served by the
most utilized node across runs

Read-Heavy Read-Only | |Update-Heavy
800+ .
1]
£
S 600~
g = |
& 400 -
© .
§ == —_
==
o 4
200 —_ =
63 DS cs DS cs DS

Time (seconds)

Figure 4.8: Aggregated distribution of number of reads serviced per 100 ms, by the
most heavily loaded Cassandra node per run. With C3, the most heav-
ily utilized node has a lower range in the load over time, wherein the
difference between the 99th percentile and median number of requests
served in 100 ms is lower than with Dynamic Snitching.

lack of oscillations and synchronized vertical bursts in the time-series. Furthermore,
given that C3’s rate control absorbs and distributes bursts carefully, it leads to a
smoother load-profile wherein samples of the load in a given interval are closer to
the system’s true capacity unlike with DS.

Performance at higher system utilization: We now compare C3 with DS
to understand how the performance of both systems degrade with an increase in
overall system utilization. We increase the number of workload generators from 120
to 210 (an increase of 75%). Figure 4.10 presents the tail latencies observed for
the read-heavy workload. For a 75% increase in the demand, we observe that C3’s
latency profile, even at the 99.9"" percentile, degrades proportionally to the increase
in system load. With DS, the median and 99.9"" percentile latencies degrade by
roughly 82%, whereas the 95" and 99" percentile latencies degrade by factors of
up to 150%. Furthermore, the mean latency with DS is 70% higher than with C3
under the higher load.

95

Ol LaCN Zyl_ﬂbl

www.manharaa.com

Chapter 4 Reducing tail-latency for cloud data-stores

Load versus time

€0

sa

I. I = T
0 500 . 1000 1500
Time (seconds)

Figure 4.9: Example number of reads received by a single Cassandra node, per
100ms. With C3 (top), Cassandra coordinators internally adjust sending
rates to match their peers’ perceived capacity, leading to a smoother load
profile free of oscillations. The per-server load is lower in C3 also because
the requests are spread over more servers compared to DS (bottom).

95th percentile 99th percentile 99.9th percentile

@ C3 DS & C3 DS @ C3 DS

£507 £ E

.40 - >150 =

o (&) (&)

5307 & 501 & 100+

® 20 - © ©

| —1 25 - — 50 -

- 10 ' hel . kel . l

© © ©

© 0- © 0- o 0-

o T T T T o T T T T o [[

120 210 120 210 120 210 120 210 120 210 120 210

#Workload #Workload #Workload
Generators Generators Generators

Figure 4.10: Overall performance degradation when increasing the number of work-
load generators from 120 to 210.

Adaptation to dynamic workload change: We now evaluate a scenario wherein
an update-heavy workload enters a system where a read-heavy workload is already
active, and observe the effect on the latter’s read latencies. The experiment begins
with 80 generators running a read-heavy workload against the cluster. After 640 s,
an additional 40 generators enter the system, issuing update-heavy workloads. We
observe the latencies from the perspective of the read-heavy generators around the
640 s mark. Figure 4.11 indicates a time-series of the latencies contrasting C3
versus DS. Each plot represents a 50-sample wide moving median® over the recorded
latencies. Both DS and C3 react to the new generators entering the system, with a
degradation of the read latencies observed at the 640 s mark. However, in contrast to

3A moving median is better suited to reveal the underlying trend of a high-variance time-series
than a moving average [40]

o6

www.manaraa.com

4.4 C3 Evaluation

Read latency versus time
c3 DS

1 1 1 1 1 1 1 1 1 1
550 600 650 700 750 550 600 650 700 750
Time (s)

Figure 4.11: Dynamic workload experiment. The moving median over the latencies
observed by the read-heavy generators from a run each involving C3
(left) and DS (right). At time 640 s, 40 new generators join the system
and issue update-heavy workloads. With C3, the latencies degrade
gracefully, whereas DS fails to avoid latency spikes.

95th percentile 99th percentile 99.9th percentile
(%2} (%2} (2]
E15- E20+ Eqd
> > >
%) ©'15 [3)
c10- c < o0 4
2 2404 2
g, K K
el o 5+ < 107
3 3 3
co- =2 — | o1 =2 — | c o1 =2 — |
c3 DS cs DS cs DS
Replica Selection Replica Selection Replica Selection
Strategy Strategy Strategy

Figure 4.12: Results when using SSDs instead of spinning-head disks.

DS, C3’s latency profile degrades gracefully, evidenced by the lack of synchronized
spikes visible in the time-series as is the case with DS.

Skewed record sizes: So far, we considered fixed-length records. Since C3 relies
on per-request feedback of the service times in the system, we observe whether
variable length records may introduce any anomalies in the control loop. We use
YCSB to generate a similar dataset as before, but where field sizes are Zipfian
distributed (favoring shorter values). The maximum record length is 2KB, with each
record comprising the key, and ten fields. Again, C3 improves over DS along all the
considered latency metrics. In particular, with C3, the 99*” percentile latency is just
under 14 ms, whereas that of DS is close to 30 ms; more than 2z improvement.

Performance when using SSDs: As a further demonstration of C3’s generality,
we also perform measurements with m3.xlarge instances, which are backed by two 40
GB SSD disks. We configured a RAIDO array encompassing both disks. We reduced
the dataset size to 150 million 1KB records in order to ensure that the dataset fits
the reduced disk capacities of all nodes. Given that with SSDs, the system can

o7

www.manaraa.com

Chapter 4 Reducing tail-latency for cloud data-stores

Remote peer's

157 performance degradey\ﬁ

Remote peer's

157 performance degrade\
i i

Rate (requests per 20ms)

Figure 4.13: Sending rate adaptation performed by two coordinators (top and bot-
tom) against a third common server. The receiving server’s latency is
artificially inflated thrice. The blue dots represent the sending-rates as
adjusted by the cubic rate control algorithm, the black line indicates a
moving median of the sending rates, and the red X marks indicate mo-
ments when affected replica group schedulers enter backpressure mode.

sustain a higher workload, we used 210 read-heavy generators (70 threads per YCSB
instance). Figure 4.12 illustrates the latency improvements obtained when using C3
versus DS with SSD backed instances. Even under the higher load, both algorithms
have significantly lower latencies than when using spinning head disks. However,
C3 again improves the 99.9"" percentile latency by more than 3z. Furthermore,
the difference between the 99" and 99.9"" percentile latencies in C3 is under 5 ms,
whereas with DS, it is on the order of 20 ms. Lastly, C3 also improves the average
latency by roughly 3 ms, and increases the read throughput by 50% of that obtained
by DS.

Sending rate adaptation and backpressure over time: Lastly, we turn to a
seven-node Cassandra cluster in our local testbed to depict how nodes adapt their
sending rates over time. Figure 4.13 presents a trace of the sending rate adaptation
performed by two coordinators against a third node (tracked node). During the run,
we artificially inflated the latencies of the tracked node thrice (using the Linux tc
utility), indicated by the drops in throughput in the interval (45, 55) s, as well as the
two shorter drops at times 59 s and 67 s. Observe that both coordinators’ estimations
of their peer’s capacity agree over time. Furthermore, the figure depicts all three
rate regimes of the cubic rate control mechanism. The points close to 1 on the y-

o8

www.manaraa.com

4.4 C3 Evaluation

CL=ONE CL=QUORUM

5757
£
)

50—
E C3
< DS
Qo5+
o}
il ﬂ ﬂ

O -
I
Mean 99 p99 9 Mean 99 p99.9

Figure 4.14: Impact of consistency level: Mean, 95th, 99th and 99.9th percentile
read latencies for read consistency levels ONE and QUORUM. The
prefix p in the x-axis labels refers to a percentile.

axis are arrived at via the multiplicative decrease, causing the system to enter the
low-rate regime. At that point, C3 aggressively increases its rate to be closer to the
tracked saturation rate, entering the saddle region (along the smoothened median).
The stray points above the smoothened median are points where C3 optimistically
probes for more capacity. During this run, the backpressure mechanism fired 4 times
(3 of which are very close in time) across both depicted coordinator nodes. Recall
that backpressure is exerted when all replicas of a replica group have exceeded
their rate limits. When the tracked node’s latencies are reset to normal, the YCSB
generators throttle up, sending a heavy burst in a short time interval. This causes
a momentary surge of traffic towards the tracked node, forcing the corresponding
replica selection schedulers to apply backpressure.

Impact of consistency level: We also present an evaluation to demonstrate the
impact of different consistency levels in Cassandra. Recall that Cassandra clients
can decide, based on their requirements, how many replicas need to acknowledge
each read and write request. While all the measurements shown so far made use of
consistency level ONE, we also present results when using consistency level QUO-
RUM. With the QUORUM consistency level and a replication factor of three, two
replicas are read from for each client-initiated read request. These experiments were
conducted on an eight node test cluster at Spotify (cluster configuration appears in
§4.4.3). We used eight Cassandra nodes with 250 million 1KB-sized records, leading
to 100GB per node for this experiment. As with the previous experiments, we used
three YCSB instances, each with 40 workload generator threads. Figure 4.14 shows
the read latency measurements for mean, 95th, 99th and 99.9th percentiles when
using a consistency level of ONE and QUORUM. We find that C3 improves the
latency distribution across both consistency levels. At consistency level ONE, with
this smaller cluster size, we find that the 99.9th percentile latency with DS is 2.2

99

www.manaraa.com

Chapter 4 Reducing tail-latency for cloud data-stores

times that of C3’s. For QUORUM reads, the 99.9th percentile latency when using
DS is 1.78 times higher than when using C3.

4.4.2 Evaluation Using simulations

We turn to simulations to further evaluate C3 under different scenarios. Our ob-
jective is to study the C3 scheme independently of the intricacies of Cassandra and
draw more general results. Furthermore, we are interested in understanding how
the scheme performs under different operational extremes. In particular, we explore
how C3’s performance varies according to (i) different frequencies of service time
fluctuations, (7i) lower utilization levels, and (%ii) under skewed client demands.
We also use simulations to analyze the impact of concurrency compensation, the
queue-penalization parameter, and the choice of the rate control algorithm.

Experimental setup: We built a discrete-event simulator, wherein workload gen-
erators create requests at a set of clients, and the clients then use a replica selection
algorithm to route requests to a set of servers. A request generated at a client has
a uniform probability of being forwarded to any replica group (that is, we do not
model keys being distributed across servers according to consistent hashing as in
Cassandra). The workload generators create requests according to a Poisson arrival
process, to mimic arrival of user requests at web servers [114]. Each server maintains
a FIFO request queue. To model concurrent processing of requests, each server can
service a tunable number of requests in parallel (4 in our settings). The service time
each request experiences is drawn from an exponential distribution (as in [143]) with
a mean service time ,u_l = 4 ms. We incorporated time-varying performance fluc-
tuations into the system as follows: every T ms (fluctuation interval), each server,
independently and with a uniform probability, sets its service rate either to pu or
to p - D, where D is a range parameter (thus, a bimodal distribution for server
performance [123]). We set the D parameter to 3 (qualitatively, our results apply
across multiple tested values of D). The request arrival rate corresponds to 70%
(high utilization scenario) and 45% (low utilization scenario) of the average service
rate of the system, considering the time-varying nature of the servers’ performance
(that is, as if the service rate of each server’s processor was (u+ D - p)/2). As with
our experiments using Cassandra, we use a read-repair probability of 10% and a
replication factor of 3, which further increases the load on the system. We use 200
workload generators, 50 servers, and vary the number of clients from 150 to 300.
We set the one-way network latency to 250 us. We repeat every experiment 5 times
using different random seeds. 600,000 requests are generated in each run.

We compare C3 against three strategies:

1. Oracle (ORA): each client chooses based on perfect knowledge of the instan-
taneous ¢q/u ratio of the replicas (no required feedback from servers).

60

www.manaraa.com

4.4 C3 Evaluation

High Utilization Scenario Low Utilization Scenario

Bl orA P e[Lor[)RR Bl or~ B cs[] Lor[)RR

400 4 . 100
—_ 3 — 3+
£ 300 o g 75- " o
~ [0} ~ @
200 i z 2 50+ =
c n c I
2100+ a o 25- a
3 Al § 3 ﬂﬂii ¢
o 0- U/l . o 0- e
= 400 i = 100
s 3 < 3
8300+ 9 8 751 " o
= @ = @
& 200 i 2 8 50 =
< Il < Il
& 100+ I i 3 5 25+ Il] 3
el ° ol °
0_ T T = T = T = T = T = 0 a T T T = T = T T
10 50 . 100 200 300 500 10 50 X 100 200 300 500
Fluctuation Interval (ms) Fluctuation Interval (ms)

Figure 4.15: Impact of time-varying service times at high-utilization (left) and low-
utilization (right) scenarios. Bars exceeding 400 ms are not shown.

2. Least-Outstanding Requests (LOR): each client selects a replica to which
it has sent the least number of requests so far.

3. Round-Robin (RR): as in C3, each client maintains a per-replica rate lim-
iter. However, here it uses a round-robin scheme to allocate requests to replicas
in place of C3’s replica ranking. This allows us to evaluate the contribution of
just rate limiting to the effectiveness of C3.

We also ran simulations of strategies such as uniform random, least-response time,
and different variations of weighted random strategies. These strategies did not fare
well compared to LOR; hence, we do not present results for them. We do not model
disk activity in the simulator, and thus avoid comparing against Dynamic Snitching
(since it relies on gossiping disk iowait measurements).

Impact of time-varying service times: Given that C3 clients rely on feedback
from servers, we study the effect of the service time fluctuation frequency on C3’s
control over the tail latency. Figure 4.15 (left) presents the 99t" percentile tail-
latencies under a high utilization scenario for C3 and other compared strategies
with 150 and 300 clients. Here, the arrival rate is set to match 70% of the system
utilization. When the average service times of the servers in the system change
every 10 ms, C3 performs similarly to LOR and RR. This is expected, because
at such a high frequency of performance variability, clients can make use of one
round-trip’s worth of feedback for at most another request, before that information
is stale. However, as the interval between service time changes increases, LOR’s
performance degrades more compared to that of C3. Furthermore, the performance
of RR suggests that rate-limiting alone does not improve the latency tail. This

61

www.manaraa.com

Chapter 4 Reducing tail-latency for cloud data-stores

Performance under client demand skews

Bl orA P cs[] or)RR

DemandSkew=20% DemandSkew=50%
,(5400 - h] -
£.300- %
th

37200 Z
e gl atldl d
o T a
4 5. wrl] I_ L] W) | o] S i_ Y DNRR DNNER
= 400 s T -
C

£ 300 Q
5 h g
£ .lﬂ { { ?
5" aildl g
o) s}
@ g4 ‘I:D L L L L ‘:D = L L L ||

10

T T T T T T T T T T
50 100 200 300 500 10 50 100 200 300 500

Fluctuation Interval (ms)

Figure 4.16: Impact of demand skews: 20% and 50% of the clients generate 80% of
the requests to the servers. Bars exceeding 400 ms are not shown.

is because RR does not proactively prefer faster servers.. We also note that C3’s
performance remains relatively close to that of ORA.

Performance at low utilization: While C3 is geared towards high-utilization
environments with a number of requests in flight [114, 126], we now demonstrate
the efficacy of C3 under low-utilization settings as well. We set the arrival rate to
match a 45% system utilization. Figure 4.15 (right) presents the 99" percentile tail-
latencies under this low utilization scenario. While the performances of LOR and
RR degrade with higher fluctuation intervals, C3’s performance begins to plateau
instead. This is because a client using LOR, will allocate requests to slow servers as
long as it has assigned more requests to other replicas (or by chance when the number
of outstanding requests is zero and/or identical across all replicas). This leads to
poor allocations as initially explained in Figure 4.1. In contrast, C3 monitors service
times presented by different servers and uses servers in proportion to their products
of queue size and service times to balance the latency distribution. Thus, unlike C3,
the longer a server remains slow, the higher the chance that it will receive requests
when clients use the LOR strategy. This weakness of LOR results in higher tail
latencies than C3.

Performance under heavy demand-skews: We study the effect of heavy de-
mand skews on the observed latencies. Figure 4.16 presents results when 20% and
50% of C3 clients generate 80% of the total demand towards the servers, respec-
tively. Again, we find C3 at an advantage because of its ability to measure and react
to relative performance differences among servers. Thus, despite the demand skew,
C3 outperforms LOR and RR.

62

www.manaraa.com

4.4 C3 Evaluation

[cfcs

600 -

— B:3
% o
£ 400 - 5
= 3
> 7]
2 200 - L
©
- 0 Om [:hl
Q@
= 600 -
[0} Eo3
8 8
S 400 - 5
< 3
£)ié

- (]
8 200 |:i g

, o=l
1 1 1 1
10 50

I I
100 200 300 500
Fluctuation Interval (ms)

Figure 4.17: Alternative approach to concurrency compensation. A replica selection
heuristic that uses a randomized, two-choices selection based on the
queue size and service time feedback from the server (2C), fares poorly
compared to C3’s approach of desynchronizing based on the outstanding
requests from a client to a server.

Impact of concurrency compensation: To deal with the challenge of concur-
rency from high fan-ins, C3’s replica ranking heuristic makes use of the number of
outstanding requests from a client to a server as a desynchronization mechanism
(§ 4.2). An alternative approach we evaluated was to use the queue size and service
time feedback from the server as in § 4.2, but instead, avoid the concurrency com-
pensation part of C3’s heuristic. Instead, inspired by [104], we use a randomized two
choices selection to desynchronize clients. In this case, for each replica ranking de-
cision, we randomly select two servers from the replica list and then pick the replica
with the best score according to the ranking heuristic. In Figure 4.17, we compare
C3 against such a heuristic (labeled 2C in the figure) for the high-utilization scenario
described earlier. The results indicate that the 2C heuristic fares poorly compared
to C3’s use of the number of outstanding requests. We attribute this two factors.
First, is C3’s use of additional information in the form of outstanding requests to
each server. Second, a two choices selection presents limited opportunity for desyn-
chronization in settings with low replication factors, which is typical of cloud data
stores (recall that we use a replication factor of 3). Indeed, in a setting without
performance fluctuations (that is, service time averages of servers remain constant),
we find that both schemes perform comparably (Figure 4.18).

Impact of the queue penalization parameter, b: We perform a sensitivity
analysis of the queue length penalization factor used for the replica ranking heuristic

63

www.manaraa.com

Chapter 4 Reducing tail-latency for cloud data-stores

[ecHcs

@

k3 #Clients=150 | #Clients=300
820 -

c

9]

5 15+

|

210+

c

(0]

[SRN

- T T T T
= 2C c3 2C c3
o Strategy

Figure 4.18: Alternative approach to concurrency compensation. In the absence
of performance fluctuations, the 2C heuristic (see Figure 4.17) fares
comparably to C3.

(b parameter). In all of our reported results so far, we have used a fixed value of
b = 3. We make use of the high-utilization scenario described above, and vary this
parameter through values from one to four. Figure 4.19 indicates the 99th percentile
latencies across different values for the b parameter choice. We note that the 99th
percentile latency is fairly robust to the choice of b in the scenarios involving 150
clients. With 300 clients however, the fan-in per-server for the same demand is
higher, and each client now operates on more uncertainty in selecting servers. With
this higher degree of uncertainty, clients benefit from switching replicas sooner (and
thus, higher values of b). At 300 clients, we see improvements exceeding 100ms at
fluctuation intervals of 500ms, when moving from b = 1 to higher values. This is
because a long queue length at a server before it slows down for an extended interval
will harm the latency tail more. Given that this effect is more prominent at higher
fluctuation intervals, penalizing longer queue lengths with higher values of b leads
to improvements in the latency tail.

Choice of rate-control algorithm: We also present an evaluation involving alter-
nate rate-adaptation algorithms. We experimented with the following rate adapta-
tion schemes in place of C3’s TCP-CUBIC inspired approach: (i) simple additive in-
crease, multiplicative decrease (AIMD), (ii) an adaptation of TCP BIC [149] (which
is similar to CUBIC), (i4) the FAST-TCP based approach used by PARDA [79].
All three approaches in TCP literature are window-based, which were adapted to
be rate-based (as we have done for C3 in § 4.2.2). AIMD and BIC use the same
congestion signal as C3 (that is, periodically, if the receive rate does not match the
sending rate, it is treated as congestion). These three approaches are thus demand
clocked. FAST-TCP on the other hand is not demand clocked. It sets a “target
latency”, and increases the rate as long as the response time is less than the target
latency.

64

www.manaraa.com

4.4 C3 Evaluation

High Utilization Scenario

Al § &

600+ -
[%2)
(@]
E 400- 53
> E
2 s
[[Iﬂ]ﬂl :
© o
— 0- mms] II. |
[0}
= 600 - -
3 o
5 400 — T
o g
g 200 - [[I 9
» o
0- |I- II. 1
10 100 200 300 500

FIuctuatlon Interval (ms)

Figure 4.19: Impact of the b parameter in the replica ranking function. The penal-
ization of longer queue lengths affects performance when the fluctuation
intervals are longer. We see improvements when switching from b = 1
to higher values, with more than 100ms of improvement at fluctuation
intervals of 500ms.

Our objective is to study how a sudden increase in system demand affects the queue
evolution at the server-side. We simulate a scenario involving ten clients and ten
servers, operating at a low overall utilization of 15%. 10 seconds into the simulation,
three clients receive a surge of requests that drives system utilization to 60%. We
refer to these clients as the high-rate clients, whereas the remaining clients are the
low-rate clients. We observe the evolution of the server’s queue length when using
the different rate adaptation algorithms. Figure 4.20 depicts the queue length over
time for one server from the moment the request surge appears at the high-rate
clients (all servers exhibited qualitatively identical profiles). We note that with
AIMD and BIC, the server’s queue length exhibits a sustained spike. C3’s CUBIC
approach leads to a short-lived spike up to 20 requests, whereas with FAST, we do
not note any perturbation in the timeseries. The reason these approaches exhibit
different outcomes is because of their convergence properties, which were in turn a
function of their parameter choices. With AIMD and BIC, the high-rate clients that
receive the traffic surge grow their client-side backlog queues while the rate-control
algorithm is yet to fully ramp up. This is evidenced by the lack of server-side queue
occupancy seen between t = 10s and ¢t = 11s for AIMD and BIC (which C3 and
FAST do not have). What follows after ¢ = 11s is a sustained drain of these backlog

65

www.manaraa.com

Chapter 4 Reducing tail-latency for cloud data-stores

Server queue length evolution

60-

40-
20-
0- Seo ieud dha T S T W

Ke) 0- ¢ T Ty ales Mottt hsacinbas st dnaim. uibdl

aniy

g
olg

ue

N

<
€0

@] 20-
0- Wonu -.-LM t‘.ﬂu.umn-m.um.m-una...uumu

1Sv4

0- M Amq“.uumuamwwwuw.uuu .

10 12_ 14 16
Timestamp (s)

Figure 4.20: Impact of rate-adaptation algorithm: Server queue length evolution.

queues when the sending rates converge, causing the queue size spikes observable in
Figure 4.20. C3’s CUBIC approach however, ramps up faster than AIMD and BIC,
leading to lower backlog queue sizes at the clients. Due to the lower backlog queue
sizes, as the clients’ rate limits converge to match the increased demand, the drain
phase has a less severe impact on the server’s queues. On the other hand, we find
FAST to be extremely sensitive to the target latency setting. For the results shown
in Figure 4.20, we set the target latency to be high (out of reach of the load at which
the system was running). This means that clients never exert any backpressure, and
do not exhibit a ramp-up phase unlike the other approaches. Hence, the backlog
queues never increase at the clients, and this “instantaneous convergence” at the
clients receiving the traffic surge leads to the lack of spikes at the server (since the
overall utilization of 60% is still well under the system capacity). Indeed, due to
these effects, the 99th percentile latencies for the low-rate clients are lower with C3
and FAST (19.43ms and 19.05ms respectively), than for AIMD and BIC (26ms and
25.75ms).

We do not interpret these differences as merits of the C3 and FAST scheme over
AIMD or BIC. On the contrary, we believe that any of these approaches can be tuned
and adapted to target either rapid-convergence or a slower ramp-up, depending on
system requirements. What we emphasize instead is that the convergence properties
of the rate adaptation algorithm is the dominating factor in determining queue
evolution at the server.

66

www.manaraa.com

4.4 C3 Evaluation

Read throughput (queries per second) Read throughput (keys per second)
| Threads: 300 || Threads: 600 || Threads: 900 Threads: 300 || Threads: 600 || Threads: 900

~ o
o o
1 1

3
1
Throughput
(1K keys/second)
- n w
8 8 8
1 1 1

n
o
1

Throughput
(1K queries/second)

0-

o
1

T T T Ll T T Ll T T T T T T T T T T T
C3 DSDS-SE C3 DSDS-SE C3 DS DS-SE C3 DSDS-SE C3 DSDS-SE C3 DSDS-SE
Replica Selection Strategy Replica Selection Strategy

Figure 4.21: SoundCloud experiment: read throughput at different loads (number
of workload generator threads).

4.4.3 Evaluations against production workloads

To further validate C3, we turned to experimentation against production workloads.
We will now discuss results from experiments conducted at two companies that
operate Cassandra clusters: SoundCloud and Spotify. The experiments in the next
two sections were conducted on Cassandra clusters running on dedicated physical
machines.

Evaluation at SoundCloud

In the evaluations conducted so far, we observed C3’s efficacy when performing
single-key reads. In this section, we discuss a performance evaluation of C3 con-
ducted at SoundCloud using a production workload that involved multi-key reads.
We will refer to a multi-key read as a query.

Experimental Setup: We used a 16-node Cassandra cluster at SoundCloud. Each
server had 32 CPU cores (Intel(R) Xeon(R) CPU @ 2.00GHz), 64 GB RAM, a
150GB SSD which hosted the root filesystem and a separate 750GB SSD which
hosted Cassandra’s data folder. The servers hosted production datasets of approx-
imately 230 GB per node, spread across a large number of column families each
with a replication factor of 3. We used a home-built workload replay tool in or-
der to generate read-requests against the cluster that followed the characteristics of
production traffic. The SoundCloud service whose read pattern was replayed gen-
erates multi-key read queries that request between one and twenty keys. Clients
issue a single query to a Cassandra coordinator picked in a round-robin manner.
The coordinator retrieves all requested records before returning a response to the
client. Thus, the overall query time will be bottlenecked by the slowest read re-
quest executed as part of the query. The column family against which we tested

67

www.manaraa.com

Chapter 4 Reducing tail-latency for cloud data-stores

99th percentile read Latency 95th percentile read Latency
= =
1204 3 90+ 3
o D
90 P NPT JUI WPC D Lk 1 a 60 bypatte &
G 607 L IT Tt T @ 304 A 9
1S e 3 I co-0o-bH8 S L ¥t o000 |3
£ = £ =
> d = >a0 - — >
g120 R ‘.3‘—4\-0-,0—1'.31' @ = C3 890 ..r“‘*_‘,f"‘*"*_. * 1§ |~c3
3 90+ ¢2=*7" t¥ g bs 360 » 4 o |8 s
= @ = e ¥h /+4~+\,’ @
S 60+ 2 - DS-SE 804 e e T 8 - DSs-SE
T s g ol et S
L} oottt b a-p e |F i} B N
1207, pa-pastdt S S el @ 90 ot % Aoty |3
90 ¢ g 60 o Ay g
@ , " @
60 1 < 309 o# ,ecee " g
3 - 3
| | | | 0+ | | i
0 5 10 15 20 0 5 10 15 20
Number of keys requested Number of keys requested
Mean read Latency 6 50th percentile read Latency
= It =
204 2 1 3
2 4 2
10- PP .+ |8
g .‘_Nﬁ.*.::::::::::tl;'i.'a’i- - o § g 4+ ’_._._._,..,.=0=0==0=o===t:|:t1=ta» §
> E 57 E
E E
8) 3 —~C3 Q12+ 3 —=C3
€204 - |D c ?
e Ao 2 - 2
2 T O D - DS 2 8- T PP DS
B ST e Q- Ds-SE = 4 R L e Q- Ds-SE
E (i 8 E - 8
164
o) o0 | [o) - |
=4 = - = Ea
- PSS B 3 O 12+ PN A 3
'4—"" A G g g 0-0"" 2 8- .,r"' o 2
109 o2 oo e 2 ISR LS S e
£ 1 U 1 U 8 4] 'A_' 1 U U U 8
0 5 10 15 20 0 5 10 20
Number of keys requested Number of keys requested

Figure 4.22: SoundCloud experiment: query latency by number of keys requested
across different loads (number of workload generator threads).

our workload amounted to roughly 130GB per node. Given that the column family
hosts timeseries data, the data has variable sized records. We used four machines
to drive the workload generator against the Cassandra cluster. Reported latency
measurements are recorded from one of the workload generators machines, whereas
throughput measurements are recorded from all workload generators. All reported
metrics correspond to the overall completion time and throughputs for queries from
the perspective of the clients. We conducted experiments using a total of 300, 600
and 900 client threads. We compare C3 against Dynamic Snitching (DS), and Dy-
namic Snitching with speculative execution enabled at the 99th percentile (DS-SE).
With speculative execution, the coordinator retries a request if it does not receive a
response within the 99th percentile latency of the column family being queried. We
use a consistency level of ONE for all results.

Results: We find that C3 improves overall system throughput across the various
levels of system load. At a workload generator thread count of 900, C3 improves the
query read throughput by 25% (Figure 4.21). This translates to an additional 25,000
queries per second (75,000 keys per second). Furthermore, while sustaining the
higher throughput, we find that C3 improves the mean, median and 95th percentile
latencies (Figure 4.22). For queries that requested 20 keys, at a load of 300 client
threads, we observe that DS and DS-SE experience roughly 3.5 times the 95th

68

www.manaraa.com

4.4 C3 Evaluation

percentile latency as that of C3. Indeed, in the setting with 300 client threads, we
see DS and DS-SE experience higher 95th percentile latencies with an increase in
the number of keys requested because the system is nearing saturation (whereas C3
exploits the combined throughputs of available replicas effectively).

However, we note that for all the tested loads, C3, DS and DS-SE present similar
99th percentile query-latencies. To understand why, note that all the algorithms
work at the granularity of individual key fetches, as opposed to entire queries. The
query latency is bottlenecked by the slowest read request executed as part of the
query. That said, DS-SE reissues requests to another replica if it does not receive a
response within the 99th percentile latency of the concerned column family. Yet, we
observe that at all the loads tested, DS-SE did not significantly improve latencies
at the 99th percentile and above over DS. The fact that DS-SE fails to improve
the query latency despite using request reissues suggests that the choice of replica
is not the bottleneck for queries that appear at the 99th percentile of the query
latency distribution. Given that the dataset being accessed comprises timeseries
data, records have variable lengths. Thus, if a high latency episode occurs due to
reading a larger record size (as opposed to sporadic performance variability), the
request will experience a similar latency regardless of the choice of replica. This
explains why, with the available dataset and workload, all schemes deliver similar
latency profiles at the 99th percentile and above (we observed this for the 99.9th
percentile as well).

Evaluation at Spotify

Lastly, we report on an evaluation of C3 against a production workload at Spotify.

Experimental Setup: The Cassandra cluster used for the evaluation comprised
8 nodes, with 16 cores, 32GB of RAM and spinning disks in a RAID 10 configu-
ration. The Cassandra cluster hosted a production dataset from a service with a
replication factor of 3, resulting in roughly 130GB of data per node. A sampled
subset of production workload from 6 application servers were redirected to the C3-
enabled Cassandra cluster hosting the production dataset. The machines sending
the workload had 32 cores and 64GB of RAM each. The workload is thus open-loop;
we observed it led to a disk utilization of 50-60% on the Cassandra nodes. The re-
quests have a read-write ratio of 97% reads and 3% writes. The accessed column
family comprises a variable number of fields (each 30 to 40 characters long), the
distribution for which is indiciated in Figure 4.24. All read requests fetch all fields
in the row corresponding to a single given key. The application servers used the
Astyanax-based [8] Cassandra clients with a consistency level of ONE, and routed
requests to Cassandra nodes in a round-robin manner.

69

www.manaraa.com

Chapter 4 Reducing tail-latency for cloud data-stores

m

[2]

=]
1

N
o
1

C3
DS

N
o
1

Read Latency (

o
1

will |

p95 p98 p99 p99.9

Figure 4.23: Spotify experiment: read latency at various percentiles with CL=ONE.
The prefix p in the x-axis labels refers to a given percentile.

Results: Figure 4.23 presents results observed at the various latency tails. C3
improves the latency tail at the 99.9th percentile by up to 27% while also presenting
lower variability than DS. At the other observed percentiles, C3 presents only a
marginal improvement. We attribute this to two factors. First, the load at which
the clusters are operated is modest with only six application servers generating
traffic, leading to low queuing delays, thus presenting limited opportunity for C3
to improve latencies at the lower percentiles. Second, the high variability of record
sizes may influence the service time measurements that C3’s replica ranking relies
upon.

During this study, we also evaluated the possibility of introducing C3 into token-
aware Cassandra clients (instead of the coordinator running the algorithm). The
clients thus send requests directly to the node hosting the key. Running C3 on the
Cassandra coordinators while using token-aware clients in this setting yields limited
opportunity for improvements. This is because the workload uses single-key reads,
and the coordinator node hosting the data is very likely to serve the request without
forwarding it (thus, not invoking the C3 mechanism at all). For instance, Figure 4.25
shows the same experiment as above, repeated with token-aware clients performing
QUORUM reads. The key obstacle in the way of implementing C3-based token-
aware clients is the modification of the client-server wire protocol, which prevented
us from further exploring this direction at Spotify.

4.5 Discussion
How general is C3?7 C3 combines two mechanisms in order to carefully manage
tail latencies in a distributed system: (%) a load-balancing scheme that is informed by

a continuous stream of in-band feedback about a server’s load, and () distributed
rate-control and backpressure. We believe that these insights can be applied to

70

www.manaraa.com

4.5 Discussion

1.00 -
0.75 -
S 0.50
L
0.25 -

0.00

I I I I
1 10 1,000 100,000
Field count per row

Figure 4.24: Spotify experiment: distribution of number of fields per row in the
accessed column family.

any low-latency data store that can benefit from replica diversity. Furthermore,
our simulations compared C3 against different replica selection mechanisms, and
allowed us to decouple the workings of the algorithms themselves from the intricacies
of running them within a complex system such as Cassandra. Lastly, insights from
C3’s replica ranking mechanism has influenced the design of ELS [14], a latency-
based load balancer built at Spotify for use against their backend services. ELS uses
a similar heuristic as C3, albeit without server side feedback. Load balancers use the
product of the number of outstanding requests to each server (¢) and an estimation
of the end-to-end latency (L) to rank replicas. Similar to C3’s b parameter, the
ELS heuristic also raises the ¢ term to a higher exponent to penalize longer queues
([14] reported using b = 3 as well). This further points to the generality of our
approach.

Long-term versus short-term adaptations: A common recommended practice
among operators is to over-provision distributed systems deployed on cloud platforms
in order to accommodate performance variability [22]. Unlike application servers,
storage nodes that handle larger-than-memory datasets are not easily scaled up or
down; adding a new node to the cluster and the subsequent re-balancing of data
are operations that happen over timescales of hours. Such questions of provisioning
sufficient capacity for a demand is orthogonal to our work; our objective with C3 is
to carefully utilize already provisioned system resources in the face of performance
variability over short timescales.

Strongly consistent reads: Our work has focused on selecting one out of a given
set of replicas, which typically applies to environments where eventual consistency

is used. This maps to common use-cases at large web services today, including Face-
book’s accesses to its social graph [141] and most of Netflix’s Cassandra usage [91].

71

www.manaraa.com

Chapter 4 Reducing tail-latency for cloud data-stores

A

2]
o
1

IS
o
1

N
o
1

Read Latency (ms

o
1

il | &

p95 p98 p99 p99.9

Figure 4.25: Spotify experiment: ready latency at various percentiles when using
token-aware clients with CL=QUORUM. The prefix p in the x-axis
labels refers to a given percentile.

However, it remains to be seen how our work can be applied to strongly consistent
reads as well. In particular, the gains in such a scenario depend on the synchroniza-
tion overhead of the respective read protocol, and the effect of a straggler cannot be
easily avoided.

Multi-tenancy and differentiated services: A dimension that we do not cover
in this work is that of multi-tenancy, as well as differentiated services for traffic from
different tenants or applications. There are several challenges on the way to support-
ing multi-tenancy for systems such as Cassandra. This includes delivering isolation
at various layers of the stack including request handling, thread-pool usage, sharing
of various caches, as well as isolation of and protection from background activities
triggered by different tenants. At the time of this study, the open-source NoSQL
data-stores we considered did not have full support for multi-tenancy (including Cas-
sandra [39]). Not surprisingly, for this reason, most Cassandra operators we spoke to
deploy one cluster per-application type. Assuming, however, that a data-store does
provide strong isolation properties, one can expect per-tenant request queues and
fair scheduling at each server (as in [126]). In such settings, clients of a given tenant
can receive queue size and service time feedback corresponding to these per-tenant
queues, and perform replica selection accordingly.

Stability: To understand the stability properties of the C3 scheme, we considered
the use of fluid models [97]. Our approach to modeling replica selection using a fluid
model involved defining a set of differential equations that describe the evolution of
queues at the servers, as a function of i) the service rates of each server, and i) how
clients distributed requests (the fluid) across the servers. Once this set of equations is
defined, they can be numerically evaluated to study the queue size evolution at each
server (as in Figure 4.20). There are several challenges in applying this approach to
studying C3. The key difficulty is in capturing the behavior of C3 clients, since they

72

www.manaraa.com

4.6 Summary

track several metrics over time in order to perform replica ranking. This includes,
for each server, the end-to-end response time, the service time and queue size, as
well as the number of outstanding requests from the client. Expressing the time-
dependent, stateful, and discrete nature of these metrics accurately in a fluid model
proved to be challenging. We therefore leave this for future work.

4.6 Summary

In this chapter, we highlighted the challenges involved in making a replica selection
scheme explicitly cope with performance fluctuations in the system and environ-
ment. We presented the design and implementation of C3. C3 uses a combination
of in-band feedback from servers to rank and prefer faster replicas along with dis-
tributed rate control and backpressure in order to reduce tail latencies in the presence
of service time fluctuations. Through comprehensive performance evaluations, we
demonstrate that C3 improves Cassandra’s mean, median and tail latencies (by up
to 3 times at the 99.9*" percentile), all while increasing read throughput and avoiding
load pathologies.

73

www.manharaa.com

www.manharaa.com

End-to-end resource allocation and
scheduling for micro-services

In Chapter 4, we focused on a two-tier setting comprising storage clients and servers.
In this chapter, we zoom out and focus on a more general setting, namely, multi-
tenant distributed systems composed of small services: Service-oriented Architec-
tures (SOA) and Microservices. For simplicity, we henceforth refer to such systems
as SOAs.

In recent years, many organizations like Netflix, Amazon, Uber, SoundCloud, Google
and Spotify have adopted Service-oriented Architectures (SOAs) [70] — and their
refinement, Micro-services [112] — to build large-scale Web applications [32,105,109,
128, 138] as well as infrastructure systems [20, 142]. SOA systems consist of fine-
grained, loosely coupled services that communicate via lightweight API calls over
the network. Every service comprises multiple service instances or processes, each
running inside a physical server or virtual machine. For instance, Netflix has separate
services for managing movie data, user data, authentication, and recommendations
[107]. Typically, these divisions align with developer team structures [113]. These
systems generally serve multiple tenants, where a tenant may represent different
external customers or consumers of the service, but also internal product groups,
applications, or differentiated background tasks.

Requests from different tenants compete for shared resources at service instances.
Tenants and operators in this setting care about diverse performance objectives,
including guaranteed throughput, fairness, meeting deadlines, ensuring priorities,
and achieving low latencies. As we elaborate below, SOAs have characteristics that
lead to unique challenges in satisfying these objectives.

75

www.manaraa.com

Chapter 5 End-to-end resource allocation and scheduling for micro-services

(A (O~AC)
O & D)D)
® BErE)

Figure 5.1: (Left) Example illustrating a set of five services, and (Right) an exe-
cution path of a request across these services. The requests execute in
two parallel branches, followed by a call to service D. Service A calls C
twice.

Complex request-response characteristics. Request execution in SOAs spans
tens to hundreds of services, each comprising tens to thousands of instances with
processing times at each tier ranging from sub-milliseconds to minutes [88]. Con-
sider the example of Figure 5.1. The sequence of service instances traversed by a
request (i.e., its ezecution graph), and its resource demands on different services
are generally unknown when the request first enters the system (at node A in the
figure). These depend on multiple factors like the APIs invoked at each hop, the
supplied arguments, the content of caches, as well as the use of load balancing along
the graph.

Limited end-to-end visibility. By design, dependent services in SOAs have little
visibility into each other. This makes it difficult for a given service to infer issues
when they arise in its immediate as well as transitive dependencies. Without end-
to-end mechanisms, services can at best only observe and react to overload at their
dependencies by observing characteristics like high latencies or the number of request
timeouts [57,108]. The loss of information as requests cross process boundaries
makes it challenging to schedule and manage resources end-to-end to meet different
performance objectives.

These two characteristics intersect to complicate resource management in SOAs.
Several case studies highlight how complex interactions in SOAs not only lead to
sharp degradation in performance (e.g., lower throughput and higher latencies),
but also trigger cascading behaviors that ultimately result in wide-spread appli-
cation outages [31,81,85,136]. To quote Steve Yegge, “Every one of your peer
teams suddenly becomes a potential DoS attacker” [151]. Furthermore, existing li-
braries [108, 137] for building SOAs require extensive tuning of static thresholds
for rate limiters and circuit breakers [57]. Setting these thresholds manually in a
complex distributed system is fragile and becomes out of date quickly as systems
evolve [90,110]. These challenges are but symptoms of a more pressing problem:
that is, the lack of adaptive, end-to-end resource management and scheduling for
SOAs. While resource management and scheduling have been widely studied in other
system domains, such as network packet scheduling [65,102,125], task scheduling in

76

www.manaraa.com

big-data systems [76,152], and process and IO scheduling [38,79,133,135], the SOA
domain has received surprisingly little attention.

Our objective is to achieve end-to-end performance objectives across communicating
services in SOA systems on metrics of concern to tenants as well as operators. As an
example, consider an SOA application with two classes of APIs: (1, for interactive
user-facing requests, and C5, for submitting logs and performance metrics. The
provider might want to execute C7 requests with latency deadline of 500ms and
Cs requests with aggregate throughput of 1000 requests per second. Our goal is
to provide simple abstractions to enforce such end-to-end policies through local
scheduling, rate limiting, and back pressure mechanisms at individual processes.

In this chapter, we illustrate the fundamental challenges to flexibly achieving di-
verse performance objectives in SOAs such as effective overload management, per-
formance isolation and fairness across different tenants as well as meeting end-to-end
request deadlines. We address these challenges with the design and implementation
of Cicero, a framework for building multi-tenant SOA systems with end-to-end re-
source management and scheduling capabilities. Towards this end, we make the
following design choices:

e avoid centralized coordination across all services to maintain autonomy of each
service and only exchange minimal information across services,

e operate without a-priori knowledge of request execution paths and resource
demands in each service,

e support a wide range of scheduling goals and policies such as achieving high
resource utilization, performance isolation, and meeting deadlines.

Solution overview. We achieve our goals via a novel composition of multiple
components that complement each other. First, each instance of a service monitors
the rates of request arrival, utilization of local resources, and the number of calls
to downstream services for each tenant. Second, requests are tagged with metadata
such as the tenant ID, deadline, or work executed so far.

The above two components of our approach give us enough visibility into request
execution across the service DAG. We then build upon this information to per-
form fine-grained, policy-based resource management. FEvery instance of a service in
Cicero locally determines rate limits for each tenant according to a resource man-
agement policy. Cicero then uses a novel distributed rate adaptation protocol to
automatically set rate limits at every upstream service that respects rates expressed
via local policies at downstream services, allowing the system to quickly react to
bottlenecks that manifest at any point along request execution paths. Furthermore,
the metadata propagation enables request scheduling inside each service instance
that can execute a wide range of common resource scheduling policies such as fair
queuing across tenants and end-to-end “aware” variants of shortest remaining time
first (SRTF) [60] and least slack time first (LSTEF') [86].

77

www.manaraa.com

Chapter 5 End-to-end resource allocation and scheduling for micro-services

Importantly, Cicero separates policy from mechanism: we provide APIs to express
policies that manage rate limiters and request schedulers at each process to meet
end-to-end objectives. In our evaluations, we demonstrate meeting several perfor-
mance objectives using Cicero, such as avoiding cascading failures, meeting end-to-
end deadlines (10x improvement in the 99th percentile latency/deadline ratio), and
isolating low latency clients from high throughput tenants (2x improved average
latencies).

5.1 Context, objectives and challenges

In this section, we provide relevant background on Service-oriented Architectures
(SOAs) and explain the resource management challenges in them.

5.1.1 SOA characteristics

Services and processes. In an SOA, a single application such as Amazon’s e-
commerce site or Netflix’ streaming service is composed of multiple services. These
services are typically maintained by separate teams (or even third parties) and com-
municate exclusively over well-specified APIs [112]. See an illustration in Figure 5.1.
Each service typically runs multiple instances (essentially, OS processes) that are
distributed across multiple servers or virtual machines. Requests are dispatched to
instances based on the type of service; for example, requests can be load-balanced
among processes of a stateless service, whereas routing in stateful services is typically
based on some form of hashing. While a request typically enters the system through
an entry point service such as a set of front-end web servers (e.g., A in the figure),
requests may also originate from internal systems that access shared infrastructure
services.

Workflows. We define a workflow as a set of requests that belong to the same
class or tenant and are bound by the same resource management criteria. We reason
about multi-tenancy at the granularity of different workflows. For instance, Netflix’s
streaming devices interact with their backend via different APIs pertaining to user
data, recommendations, movie data as well as ratings [107]. The activity triggered
by each of these API calls may be categorized as a workflow each (therefore enabling
each API call to have different end-to-end performance objectives such as deadlines).
Similarly, background system activity (such as geo-replication) may be classified as
a separate workflow as well.

Workflow execution DAGs are complex and opaque. Request execution in
SOAs are best represented as a DAG of visited services. For instance, consider the
Bing SOA, which is made up of a hundred services and wherein workflows have
different execution DAGs [88]. The DAGs are both deep — 20% of the workflows
contain sequences of at least 10 services — and many-way parallel — 10% of services
aggregate responses from 9 other services. A crucial aspect of request execution in

78

www.manaraa.com

5.1 Context, objectives and challenges

SOAs is the opacity of this execution graph and its corresponding resource consump-
tion to each service. That is, a service is typically oblivious to (i) the end-to-end
execution graph of the request, which depends on load balancing, multiple levels of
caching, number of instances per service, and API parameters used to invoke dif-
ferent services, (ii) request amplification, wherein a single request at an upstream
service might correspond to thousands of requests at a downstream service, (iii)
request cost, where different requests at an upstream service may have varying costs
further downstream; for instance, the cost of loading an object at a storage service is
proportional to the object size and is potentially unknown when an application-level
request first enters the system at an entry point. Lastly, workflow characteristics
may change as the codebase for individual services evolve, further aggravating to
the opacity of request execution graphs [90].

5.1.2 Goals of Cicero

Our objective is to flexibly enforce diverse multi-tenant resource management poli-
cies in the SOA setting. Policies and objectives we consider within scope include:

High utilization and avoiding overload. Avoiding wasteful over provisioning is
a desirable goal for data center operators [62]. At the same time, it is important to
avoid the dangers of overload, which can result in cascading failures due to complex
interactions [81,85].

Fairness and performance isolation. Fair sharing of resources at every instance
of a service is a desirable property in large systems. Multiple notions of fairness
are of interest here, including bottleneck fairness [100], DRF [74], and weighted fair
sharing [125].

Minimum throughput guarantees. A shared service may be provisioned to offer
a subset of users minimum throughput guarantees [63], with other users receiving
best effort service.

Differentiated services. Requests from different workflows may need to be sched-
uled at each hop according to pre-defined priorities [62]. For instance, traffic from
paying users may receive higher scheduling priority at every service. Alternatively,
activity triggered by interactive, user-facing workflows often require higher priorities
over background workloads [62].

End-to-end deadlines and latency SLOs. Different workflows may have varying
end-to-end deadlines, typically determined by SLOs [63]. As an example, user facing

web-sites often need to load a page in under 100-400ms for a fluid user experience
[127].

79

www.manaraa.com

Chapter 5 End-to-end resource allocation and scheduling for micro-services

5.1.3 Challenges of regulating load and latencies

We now discuss how () the lack of end-to-end visibility and (#7) the complex work-
flow DAG structures in SOAs make it challenging to realize the above policies. We
first describe several production outages that highlight the challenges we focus on
in this work.

Outages in production. Visual Studio Online experienced an outage [85] caused
by an interaction of two different request types in a hierarchy of services. A single
workflow was accessing a slow database deep in the service hierarchy. The block-
ing RPC calls from the upstream service eventually exhausted the service’s thread
pool. This subsequently starved other unrelated requests contending for the thread
pool to initiate connections towards an authentication service, causing widespread
application unavailability. A similar interaction across tiers led to an Amazon AWS
outage [81]. Services therefore have to be aware of potential bottlenecks among their
downstream services. In another episode, a performance degradation of some Ama-
zon EBS instances triggered a sequence of bottlenecks in related services. During the
firefighting effort, operators manually intervened to aggressively throttle upstream
EC2 service APIs to reduce load on the downstream EBS service, which affected
more customers than necessary [31]. Such manual intervention is error prone and
challenging to reason about.

Regulating system load. Based on the issues observed in the above production
systems, we now illustrate the fundamental challenges of regulating system load
through a concrete example. Consider the set of services from Figure 5.1 (left) and
two workflows wy and ws; wy executes in A, followed by B and then E, and returns,
while ws only executes in A. When w; and ws execute together and service E becomes
congested (EBS slowdown), service A (upstream EC2 front end) is not aware of the
downstream bottleneck and also does not know if w; (specific EC2 API call) uses that
bottleneck or not. Also, when w; requests execute in A but timeout in congested
E, the work they executed in A and B is wasted. Rate limiting w; at the entry
point to A would reduce wasted resources and increase the throughput of wy since
more resources in A would be available. However, reasoning about wasted resources,
goodput, and fairness across tenants is difficult because of the limited visibility and
complex execution patterns. Since workflows contend for shared resources in the
system, their respective rate limits at every hop have mutual dependencies and
therefore cannot be tuned independently of each other. Furthermore, the exact
values of these rate limits depend on characteristics such as how requests are routed
internally in the system, how requests amplify or fan-out between tiers and how
costly these requests are at different components. Identifying these rate limits in a
dynamic distributed system with limited global information is thus challenging.

Achieving low end-to-end latency and deadlines. Scheduling request process-
ing at every hop in the system to meet end-to-end latency guarantees is challenging
due to the complex structure of execution DAGs and the inherently stochastic nature

80

www.manaraa.com

5.2 Cicero design

of the problem. More specifically, achieving latency goals depends on the processing
times for each workflow at every service and stages of their execution DAGs [88].
In the above example, if w; has a 300ms end-to-end deadline and requires 250ms of
processing time at E, it only has a budget of 50ms to complete A and B. Despite
myriad existing scheduling algorithms to prioritize requests with different perfor-
mance objectives (such as shortest remaining time first (SRTF) [60] and least slack
time first (LSTF) [86]), realizing these policies in a fully distributed setting remains
non-trivial. These algorithms rely on information such as the remaining processing
time and slack to deadlines, which need to be dynamically estimated across diverse
workflows. While literature exists on achieving end-to-end latency guarantees in
communication networks [117, 129, 130, 134], their underlying models are simpler
(e.g., single path vs. DAG, single resource vs. multiple resources), and cannot di-
rectly apply to our context.

5.2 The Cicero system

Cicero is a framework for building SOAs that supports end-to-end resource manage-
ment and scheduling for workflows. It transparently monitors workflow characteris-
tics and resource utilization per-workflow at each process to: i) enforce rate-limits
end-to-end: ensuring that rate-limits at upstream services reflect bottlenecks and
workflow behavior further downstream, and i) prioritize request execution at each
service based on end-to-end characteristics of the request, such as deadlines and the
amount of remaining processing time.

5.2.1 Design space

Intuitively, we can view this problem through the lens of network congestion control.
However, the workflow rate-limiting problem in SOAs differs from the network con-
gestion control problem in important ways. In TCP, sources perform rate-limiting
and coordinate with the endpoints directly for flow-control. They then infer con-
gestion in the network either indirectly through congestion signals (such as packet
loss and latency) or through explicit feedback [2,67] to tune their sending rates.
Endpoints of a network flow are fixed (this is true even for multicast congestion con-
trol [26]). These assumptions do not hold in an SOA. Upstream services do not know
about their transitive dependencies, and due to effects such as request amplification,
caching and routing, subsequent requests of the same workflow may be processed
by entirely different downstream services (and instances). Furthermore, different
workflows may have end-to-end completion times that vary by orders of magnitude,
unlike end-to-end RTTs in networks. These properties make it challenging to reason
about system stability and convergence when designing source-based congestion con-
trol algorithms. Another alternative is to use centralized coordination [100], which,
however, makes it challenging to make per-request (as opposed to per-workflow)

81

www.manaraa.com

Chapter 5 End-to-end resource allocation and scheduling for micro-services

scheduling decisions while accounting for complex workflow DAG structures. As we
demonstrate, a fully distributed design overcomes this limitation.

5.2.2 Cicero components

Our design has three core requirements: (i) avoid centralized coordination, (i) ex-
change minimal information between services, (7ii) operate without prior knowledge
of a workflow’s costs and graph structure. At the same time, we want Cicero to pro-
vide building blocks that enable operators to enforce flexible system-wide policies
depending on their requirements with minimal tuning.

Per-process local model per-workflow. Each instance of a service in Cicero
maintains a minimal, local, per-workflow model of request execution, which auto-
matically adapts to workload changes. In our implementation, processes maintain
average rates of arrival, load on local resources, and the number of calls to down-
stream services (request amplification) by workflow (Table 5.2). Our approach can
also be extended to use more sophisticated prediction techniques [38].

Metadata propagation. Requests are tagged with metadata that enable dis-
tributed scheduling to achieve different performance objectives. The propagated
metadata includes the workflow ID, the elapsed time so far, the deadline (if any), as
well as per-workflow statistics we estimate on-the-fly such as the total service time
and cost associated with each request, and per-request estimations of the remaining
processing time.

Distributed rate- and admission- control. Every process uses a local rate-
limiting policy in order to identify admission rates for requests of different workflows.
To ensure that workflows are rate-limited as early as possible instead of only being
throttled at the point of congestion (§5.1.3), we use a distributed rate adaptation
algorithm (§5.2.4) wherein each service instance announces per-workflow rate limits
to its upstream services. With every service executing this algorithm, upstream
services are informed about per-workflow rate-limits that match bottlenecks further
downstream. Furthermore, we perform admission control in order to avoid wasting
resources on requests that will not complete within their deadlines.

Request scheduling and sub-tasks. At each process, an admitted request from
a workflow triggers one or more sub-tasks (similar to Hystrix’s commands [108]).
Developers build their micro-services as a composition of sub-tasks. Sub-tasks at a
service instance may in turn call further downstream services. These sub-tasks in-
voke a scheduler that enforces diverse scheduling policies. For example, the scheduler
may enforce fair queuing across workflows on local resources such as disks, CPU,
or connection pools, to guarantee performance isolation. Alternatively, sub-tasks
may be ordered based on scheduling policies such as shortest job first (SJF), earliest
deadline first (EDF), or least slack time first (LSTF), which are used to optimize
for a range of end-to-end performance goals.

82

www.manaraa.com

5.2 Cicero design

(N\
- ': User :‘| SubTask |-| SubTask |-| SubTask |
[Request || % | -

_ \ g H .,.,‘................'.M.wn..x.m:.4..4.“: :)
(o) —
Cicero »_Rate Limiter |'[Local model and SubTask]

Instance ! — n Irements Scheduler
b| Rate Limiter | -

t

&

—————— — — —

Figure 5.2: Cicero architecture.

Metadata !

Rate control
protocol
—_—————

|- [Reaest |

Cicero
Instance

|| Distributed
rate control

Policies examine resource utilization by different

workflows locally and determine rate limiting and sub-task scheduler be-

havior.

Distributed rate control automatically ensures that upstream

rate limits reflect downstream bottlenecks. Metadata propagation en-
ables end-to-end scheduling policies.

5.2.3 Cicero architecture

Figure 5.2 depicts Cicero’s architecture, which includes user code, operator policies,

and the Cicero core.

User code.

Developers building micro-services express APIs and business logic

as a composition of sub-tasks. As an example, a payment gateway service might
execute an external API for managing a credit card payment using three sub-tasks
in sequence: fetching the relevant user object based on the API call, processing the
payment order, and then finalizing a credit card payment. Developers use Cicero’s
APIs to assign workflow IDs to requests and sub-tasks, register resources (and their
capacities) to be monitored by Cicero, and provide hints to the scheduler such as

request deadlines.
restrictions.

We omit showing example user code and APIs due to space

Operator policies. Operators in Cicero specify rate limiting policies that execute
at each hop. These policies run periodically and output rate limits per-workflow
after observing resource utilization locally. The policies set rate limits to match
resource sharing objectives such as fairness or minimum throughput guarantees.
Furthermore, operators also specify local scheduling policies that prioritize sub-
task execution according to objectives such as meeting deadlines. Table 5.1 shows
example APIs for writing rate limiting and sub-task scheduler policies.

Cicero core. The core bridges user code and operator policies. As a user’s sub-tasks
execute, they acquire and release resources such as connections from a connection
pool and threads from a threadpool. Each request in Cicero has a context object
propagated with it, which holds necessary metadata required for the operator policies

83

www.manaraa.com

Chapter 5 End-to-end resource allocation and scheduling for micro-services

CreateRateLimiter(workflow, < properties >)
Create a new rate limiter for a workflow

Get/SetRateLimiterProperty(workflow, < properties >)
Get/Set admission rate, max burst size or max queue size for a rate limiter

GetAdmissionRatesFromRemote(workflow, process)
Retrieve admission rates from a downstream process

GetResourceUtilization(workflow, resource)

Get the resource utilization for a workflow against a resource
GetWorkflowArrivalRate(workflow)

Get the arrival rate for requests of a workflow
GetSubtaskCost(workflowId, subtaskId)

Get the costs of a sub-task type by workflow
Get/SetRequestMetadata(reqCtx, < metadata >)

Get/Set metadata for a request (examples in Table 5.3)
DropRequest/Subtask(reqCtx)

Drop request or sub-task processing (to be handled by user)

ConfigureResourceSemaphore(resource, < properties >)
Configure concurrency and queue size thresholds for semaphores

Table 5.1: Example APIs used by resource sharing and scheduling policy developers

such as the workflow ID, elapsed time, deadline and metrics that estimate request
progress (§ 5.2.4). Furthermore, Cicero monitors utilization of the local resources
and infers properties of the workflows (§5.2.4). The metadata propagation and
local model inform resource management decisions by the operator policies (§5.2.5).
The distributed rate adaptation then automatically adapt rate limits at upstream
processes to match rate limits at downstream services, while factoring in workflow
characteristics (§5.2.4). The sub-task scheduler is invoked between each execution of
a sub-task, wherein it prioritizes sub-tasks based on the scheduling policies specified
by the operator (§5.2.4).

5.2.4 Cicero core

Measuring workflow and resource properties

Resources in Cicero are protected by semaphores to limit concurrency [108]. As sub-
tasks from different workflows execute, they acquire and release these semaphores
when using different resources. The duration for which a semaphore is held is the
service time. We measure and maintain exponentially weighted moving averages
(EWMA) of the service times st against each resource by workflow. The total service
time consumed by a workflow in a measurement interval gives us the demand of

84

www.manaraa.com

5.2 Cicero design

w; Workflow j
Sn Service n, defined as a set of processes
i Process ¢
0 j Admission rate of w; at p;
U;, D; | Set of upstream and downstream services for p;
a;q; | Amplification factor at p; to downstream service d for w;
Ri Set of resources in process p;
Cik Capacity of resource k in p;
l;jr | Average load on resource k in p; by w;

Table 5.2: Notation used for algorithm description

I+I

I N L . ~o
~
7 ~ 1 1 ~
~ \ \ ~

B0 B 0E B @)
Quantile =100 0=90 0=125 ©=100 0=90 0=125 0=100 0=90 ©=125
Knob (q) q=0 q=0.5 q=1

~ -
~
~
~

Amplification
Factor (a)

Figure 5.3: Rate aggregation: influence of quantile knob (¢) and amplification factor
() in how upstream services aggregate downstream admission rates (o).
a for a workflow is measured automatically by the system, whereas ¢ is
adjusted by an operator (see §5.3.5 for a sensitivity study).

that workflow against a resource. Cicero maintains EWMASs of measurements such
as, (i) arrival rates of requests per-workflow, (ii) the number of further calls per-
request to downstream services or amplification factor («), (i) the local costs per
workflow (), and (iv) the average completion time of a workflow once admitted (L).
Importantly, we track averages of these measurements over a control interval. These
measurements inform resource allocation decisions by the rate control component
and the sub-task scheduler (Figure 5.2). Our approach does not preclude using more
sophisticated prediction techniques or exogenous models of workflow behavior [38].

Distributed rate adaptation

We now describe the distributed algorithm in Cicero to adapt per-workflow rate
limits system-wide. We compute the rate of workflow w; on each process p; as
a minimum of the local bottleneck rate at the process and bottleneck rate across
all downstream services. In our approach, every process p; periodically (by default
100ms) executes two steps in sequence (Algorithm 3). First, p; queries processes of

85

www.manaraa.com

Chapter 5 End-to-end resource allocation and scheduling for micro-services

its downstream services (d € D;) for their admission rates per workflow w; (that is, a
vector of rates per service d, {04 ;}). The rates announced by individual processes of
a service are aggregated into a single rate per service. From these rates per service,
the minimum is chosen for each workflow, yielding the downstream bottleneck rate
per-workflow U;-. Next, p; computes rate limits according to its local resources based
on a policy such as bottleneck fairness or minimum throughput guarantees (§5.2.5).
p; then sets its announced o; to the minimum of its local and downstream rate
limits. Every iteration of these steps bubble up admission rates through the service
topology, with processes of upstream services enforcing admission rates that match
downstream bottlenecks. We now discuss the rate aggregation in detail.

Rate aggregation. The aggregation phase is responsible for bubbling up rate
limits, and is key to Cicero maintaining efficient resource utilization. In lines 1-2
of Algorithm 3, each process polls all processes of its downstream services for their
admission rates (o). Recall that requests in an SOA can amplify (§5.1), wherein
a single admitted request at a process can trigger multiple outgoing requests to
downstream services. Line 1 corrects for this effect by scaling the downstream rate
in proportion to their average amplification factors («). Lastly, line 3 reduces all
the admission rates per-workflow from different processes of a service, into a single
per-workflow rate limit, ag-. The calculation of a single rate for an entire service is
parameterized by a quantile knob ¢ = [0,1]. Given that processes compute their
local admission rates based on observed demand, load and system capacity, differ-
ent processes of a downstream service may not announce identical admission rates
(this can happen due to differences in capacity across services because of skewed
workloads, failures or throughput reduction caused by background activities). The
q parameter allows an upstream process to be pessimistic or optimistic in the face of
such uncertainty. Figure 5.3 shows the influence of ¢ and « in the rate-aggregation
process. The extreme values of ¢ regulate the system load to either minimize wasted
work and “match the slowest link” (¢ = 0, Figure 5.3 (left)) or maximize utilization
by setting rates according to the highest admission rate from the downstream ser-
vice’s processes (¢ = 1, Figure 5.3 (right)). ¢ = 0 leads to Cicero executing a min
aggregation of the admission rates from the downstream services up to the entry
points, and ¢ = 1 performs a maz aggregation. In our experiments, we use ¢ = 0.5
(Figure 5.3 (center)) to perform a median aggregation, and we also demonstrate the
sensitivity to this parameter (§5.3). For scenarios where the number of processes in
a service is small, the quantile selection may use a linear interpolation between the
values of ranks closest to the quantile. Once the downstream bottleneck rate 0’3- is
calculated, the process executes a local policy (§5.2.5) to determine local bottleneck
rates per workflow, 053-6“1. Lastly, for each workflow w;, the algorithm finalizes its
announced admission rates o; ; to be the minimum of aﬁfjcal and o7. When polled,
downstream processes return a o; j to a parent in proportion to the demand arriving
from the parent.

86

www.manaraa.com

5.2 Cicero design

Algorithm 3 Rate adaptation at p; (Every 100ms)

Constants: ¢: quantile parameter | Initialize {0’} « oo

1: for all d | D; do > In parallel
2: {oa;} < query(d)/ciq > Scale by amplification factor
// Admission rate of downstream service is ¢'" quantile of {og ;}
3: for all w; do
4: 0} < min(o}, quantile({o4}, q))
5: {af?jcal} <+ Local ResourceSharingPolicy()
6: for all w; do
7 Oij min(aé?jcal, o})
Metadata Used by
Workflow ID Rate limiters, fair queueing,

resource accounting
Elapsed service time (stePs¢d) * | LSTF, SRTF

Total service time (st/o%el) * LSTF

Work so far (gelapsed) * LASF

Total work (#fotel)* SJF

Deadline, EDF, LSTF, drop logic
Start time LSTF, drop logic

Table 5.3: Metadata usage (*estimated using progress metrics)).

Metadata propagation

Cicero not only taints requests with metadata to supply relevant execution context
but also to estimate request progress. With progress estimation, we infer metrics
such as the total service time or total consumed resources by a request as it executes
in a distributed environment. All requests are tagged with a workflow ID that is
used to route requests to their respective rate-limiters, an end-to-end deadline § and
the start timestamp.

Cicero by design operates without prior knowledge of a workflow’s costs and execu-
tion DAG structure. However, as discussed in §5.1.3, to use scheduling algorithms
such as SRTF [60] and LSTF [86] to meet end-to-end latency objectives, Cicero
needs to track metrics such as the total and the remaining service time for each
request as they execute. Note, the total service time is different from the average
end-to-end latency experienced by a request; the service time does not include queu-
ing delays at each hop. This is important, because if a request needs only 1ms of
processing at an instance, but the same type of request experienced 100ms of queu-
ing delay in the past, it mischaracterizes the request’s priority for algorithms such
as SRTF or LSTF. We therefore need to estimate metrics per-request that reflect

87

www.manaraa.com

Chapter 5 End-to-end resource allocation and scheduling for micro-services

its true execution progress (progress metrics). A progress metric can be queried
for the total end-to-end estimate, elapsed and remaining values at any point in the
request execution. We track two progress metrics: the service time st and the total
load € (demand divided by capacity), which enable multiple scheduling algorithms
(Table 5.3).

Progress metrics. Our solution (details forthcoming) to track the elapsed st
and 0 emulates the standard recursive algorithm to compute the sum of values of
all vertices in a DAG. However, request execution DAGs can have both parallel and
sequential stages (§5.1.1). For metrics such as the remaining service time st, the sum
of service times measured at every branch of a parallel execution across processes
over-estimates the true service time left in the system. To correct for this, we sum
metrics across sequential stages, and in parallel stages, we divide the sub-tree sums
by the degree of parallelism. On the other hand, to track the total cost of a request
(in terms of 6), a sum gives the expected result.

Progress metric update algorithm. Consider a metric m that we want to
estimate end-to-end (where m is the service time or load). We propagate two coun-
ters per metric, a,, and b, along with the request. a,, holds the total value of the
metric up to the time the request was received at a process. by, tracks the total
value of the metric in the currently executing process and its downstream processes.
At any point in time, the elapsed estimate of m is equal to a,, + b;,. The intuition
is that we keep updating b,, at each hop and when execution inside a downstream
process completes, we update b, at the parent. The counters start as (a,, + by, 0)
at each hop, with the values of a,, = 0 and b,, = 0 corresponding to the initial
state at the entry points. When a sub-task of a request is successfully serviced at
a resource, we update b,, by the relevant metric. For instance, if we are tracking
the elapsed service time (st) and we service a request for 6ms, we update (as, bst)
to (ast, bst + 6). When an execution of p parallel downstream executions complete
and control is resumed at the parent process, the parent updates its local values of
(@m, brm) 1O (@, by, + D b;) if the metric is a sum type metric (like when comput-
ing the total load 6 for the request), or to (@, by, + > b;/p) for metrics such as
the service time. This recursive approach works consistently across both sequential
and parallel DAGs. When a request’s execution completes end-to-end at the entry
point, the resulting values for (a,, b,,) for every metric m yields the required total
T, which is maintained at the entry points as an EWMA. For future invocations of
the workflow, the total value T}, is propagated along with the request. Scheduling
algorithms that use the remaining value of a metric m (such as SRTF and LSTF)
estimate it as T}, — (@, + by,) at any instant.

Sub-task scheduling

While rate limiting regulates the average load on each process, sub-tasks triggered
by the arrival of a request at a process are executed by local schedulers. These

88

www.manaraa.com

5.2 Cicero design

schedulers may enforce performance isolation between sub- tasks of different work-
flows (to say, protect low latency tasks from head-of-line blocking in the presence of
throughput heavy workloads [62]) or prioritize their execution based on end-to-end
performance objectives (differentiated services or deadlines). Local scheduling inter-
leaves sub-tasks of different workflows in time, and are essential to Cicero’s ability
to meet end-to-end latency and deadline goals (§5.3.2).

5.2.5 Operator policies

Policies to compute rate limits. Operators may choose to provide static
throughput guarantees, calculate rates based on bottleneck fairness, or receive feed-
back from the local queue schedulers and resources. As long as every process ex-
poses its per-workflow admission rates to its upstream neighbors, the rate aggrega-
tion mechanism transparently ensures that upstream processes converge to rate limits
that factor in downstream restrictions (§5.2.4). We implemented a bottleneck fair-
ness policy (Algorithm 4) similar to [100]. With this policy, each process p; checks
if a local resource is bottlenecked. If not, it ramps up the announced admission rates
o for every workflow for which p; is a leaf service (no further downstream services),
by an additive probe factor (3, scaled according to the amount of spare capacity
available (this increases the rate faster when there is spare capacity available and is
more conservative otherwise) (line 5). For non-leaf workflows, p; inherits the aggre-
gated downstream rate o’ (line 7). If instead a local resource is bottlenecked, the
system calculates max-min fair shares for the contending workflows (line 9).

Local scheduling policies. We now discuss multiple scheduling policies realized
using our framework. We implemented a multi-resource fair queuing scheme similar
to [126]. Fair queuing across workflows is particularly useful at protecting short
and bursty workflows that do not benefit from rate limiting (§5.3.1). The scheduler
uses the deficit round-robin algorithm [125], wherein every workflow gets a number
of credits per-round and credits are consumed based on the expected cost of the
sub-task. A fixed number of credits per-round are budgeted across each workflow in
proportion to the shares per-workflow (computed via a bottleneck fairness allocation
or via DRF [74]). To meet end-to-end deadlines, our LSTF scheduling policy strives
to favor sub-tasks with the least remaining slack (§5.3.2). We also realized scheduling
algorithms such as LASF [115], which favors short-lived workflows when the system
has bursty arrivals. All scheduling policies are enabled by progress metrics and
other metadata propagated via the requests. Algorithm 5 illustrates the priority
assignment procedure for different scheduling algorithms.

Admission control and drop policies. To regulate lengths of different queues
in the system (rate limiters, scheduler, and resource queues), requests need to be
dropped on time according to different policies. For instance, the drop policy we
use across all our experiments ensures that when a request from a workflow w;
arrives at a rate-limiter in p; (shaping at rate o;;), the rate-limiter only queues

89

www.manaraa.com

Chapter 5 End-to-end resource allocation and scheduling for micro-services

Algorithm 4 Bottleneck Fairness Policy at p;

Constants: §: Probe factor for increasing rate

Wi
Cik— 2 lijk
1: k' « argmin{¢y = 277:} > Spare capacity fraction
2: if ¢ > 0 then
3: for all w; do
4: if leaf node for w; then
¢
5 o oi+ B+ Tw; 1, f/,c,>0|) > Ramp-up
6: else
7: afof‘ll 0} > Inherit rates from downstream (Alg 3)
8: else
9: {shares;} < MaxMinFairness({l; j x'},7%’)
10: for all w; € l; j» >0 do
11: ratio < {sharesj}l‘c"f’;/
7
12: if ratio > 1 then
13: aff’jc“l —oij+p > Under-utilizing fair share
14: else
15: afojcal + 0y - ratio > Exceeding fair share

a request enough such that it remains feasible to meet the deadline. The policy
computes the maximum tolerable queuing delay for a request as delay™** = §
(ElapsedTime(req;) + L;). If the current backlog on w;’s rate-limiter exceeds
delay™** * 0; j, it drops the request. That is, each service locally uses the estimated
completion time (L; ;) for a request of the incoming workflow, the elapsed time of the
request, as well as the request’s deadline to calculate a maximum tolerable queuing
delay. If this delay exceeds the expected queuing delay on the rate-limiter, the
request is dropped. Cicero thus drops requests that have little chance of completing
within their deadlines, freeing up resources for other requests. Note, when we drop
a request or sub-task, Cicero simply returns control back to user code (which may
then gracefully degrade service [49]).

req; —

5.2.6 Implementation

Our prototype is implemented as a C# library and makes heavy use of C#’s prim-
itives for asynchronous programming. For now, our prototype passes request meta-
data explicitly as a context object parameter throughout the system. However,
aspect instrumentation [100] will allow this metadata to be propagated transpar-
ently. As in [108], Cicero uses the notion of semaphore protected calls to monitor
service times against different resources, and uses these measurements to inform re-
source management policies. Cicero however can also be extended to accommodate

90

www.manaraa.com

5.3 Clicero Evaluation

Algorithm 5 Priority Scheduling at p;

: function ENQUEUE(Workflow w;, SubTask t)
Heap,,;.add(t, Priority(t))

: function LSTF-PRIORITY (req)
remainin, elapsed
{streq 9 stﬁ‘;zal — Streq
elapsed remaining

1
2
3
4
5: return d,cq — (timeyeq + Streq)}
6
7
8

: function EDF-PRIORITY (reg){return d,., — timefle‘;p“d}

: function SRTF-PRIORITY(req){return stﬁoefzal — stﬁé‘flpsed}

. function LASF-PRIORITY (req){return stcrsed}

x10

x5

Auth II
Service

x10

Partition |
Service l

x10
Block I
Service

Figure 5.4: (Left) Cloud data store topology used in the evaluation. Workflows tra-
verse four services (FE, Auth, PS and BS). Every request to a PS triggers
multiple read/write sub-tasks to the BSs as well as local computations.
(Right) Workflow DAGs used in performance isolation experiment.

x400 x400

diverse resource monitoring and accounting techniques as used by [38,100,126,135],
which we consider out of scope for this chapter.

5.3 System evaluation

In this section, we demonstrate how Cicero enforces different resource management
policies: (i) Avoid overload and provide isolation in the presence of aggressive work-
flows (§5.3.1), (ii) Meet end-to-end deadlines (§5.3.2), (iii) Isolate low-latency traffic
from high throughput traffic (§5.3.3). We further stress Cicero’s distributed rate
adaptation by showing (iv) how it reacts to hotspots (§5.3.4), and demonstrate (iv)

how operators can navigate the goodput vs utilization trade-off using the quantile
knob ¢ (§5.3.5).

Experimental Setup. We run our experiments on a testbed comprising forty
virtual machines. Each VM has a single 2.40 GHz CPU core, 2GB of RAM and
runs Windows Server 2012 R2. All services make use of the .NET CLR version 4.5.
Each instance of a service in our experiments runs as a process inside a VM.

91

www.manaraa.com

Chapter 5 End-to-end resource allocation and scheduling for micro-services

Per—workflow latency

10000 -
M w
1000 - W S
— m o0 8
2 100- g0 < A
= 10 - --B
© 10000 - —
£ el c
£ 10004 ; % -
2 ARE Y : e v e . | =D
B 1007 | litemeemihth, N P AL S, 0 50, .
o 10 -
o
§ 10000 — . o
1000 - 7 G
100 = e ML%%»,- LR i an B AN 5. :U
o
10-, | | |
40 60 80 100
Time (s)

Per—workflow throughput

n
o
o
L
auljeseg

[3) A N o
8 100 - “2ORpamidtPnsisotuitys g WP T

o)

)

-

o

S

1004 2engd A% S
0- T T AA/l\
40 60 80 100

Time (s)

Figure 5.5: Performance isolation experiment. (7Top) The latency timeseries of the
experiment smoothened with a moving median shows how the aggressive
workflow (F, red) drives the system into overload. End-to-end rate-
control throttles F' at the ingress and protects other workflows. (Bottom)
Throughput obtained by all workflows. In the baseline, throughputs of
all workflows gradually degrade as all requests time out.

We demonstrate Cicero’s effectiveness using the service topology of a large produc-
tion cloud storage system that exhibits complex DAGs of operations (Figure 5.4).
We emulate the characteristics of the production system (request routing, execution
DAGs, and sub-task costs), as opposed to running Cicero within the original system.
The system comprises four tiers: front-end (FE), authentication (AUTH), partition
service (PS), and block storage (BS) services. FEs are the entry points that accept
client requests. FEs first verify client requests against an AUTH server. They then
route the request to a PS that holds the table for a tenant, determined via consistent
hashing. The PS process then issues a sequence of reads and writes to the BS service
before executing compute work locally and returning results. The workflow DAG
thus exhibits multiple stages. Our setup comprises ten FEs, five AUTH servers, ten
PS instances and ten BS servers. Cicero monitors resource utilization by workflow
across all thread pools and connection pools in the system. In addition, we emulate

92

Ol LaCN Zyl_ﬂbl

www.manharaa.com

5.3 Clicero Evaluation

Timed out requests

100 -
75
50 -
23_ [] |
=100
75
50
L 25+
o 04
= 100

75

50 -
1
F

auljeseg

%)

ractio
fo}¥|

Dro|

o4 + 04

25
0-

A B

i
D G

C D E
Workflow

Figure 5.6: When running rate-control only, the bursty tenant is not guaranteed
performance isolation as the steady workflows dominate system queues.
A fair-queuing scheduler resolves this.

a disk resource at the BS servers as well as a local compute stage at the PS. For
these two emulated resources, we vary the service times for different workflows to
study different bottleneck scenarios (service times are drawn from exponential dis-
tributions). We drive client workloads from five VMs. Every workflow has a fixed
number of PS partitions. Each PS partition corresponds to a fixed number of blocks
on the BS tier, uniformly distributed across all available BS processes. Open-loop
clients generate requests according to a poisson process [114] and are bursty.

5.3.1 Can Cicero enforce performance isolation?

The workflow DAGs for this experiment are indicated in Figure 5.4 (right). Work-
flows A-D are read-write workloads with an arrival rate of 100 reqs/sec each at the
FEs. Every request from these workflows at a PS triggers a read and write request
to the BS in sequence followed by some compute work at the PS. Workflow F is-
sues metadata queries that are serviced locally by the PS without any interactions
with the BS layer. Workflow F' is an aggressive tenant’s workload generated by four
clients that exceeds their fair share at the BS tier. Workflow G is bursty traffic
with an arrival rate of one request every two seconds. Each request from workflow
G triggers 400 reads in parallel, followed by 400 writes to the BSs, each of which
consumes a disk resource for 200ms on average.

We compare performance across three scenarios: (i) Timeouts only, where the sys-
tem only makes use of deadline based timeouts and does not use fair-queuing or
rate-control (baseline). (7i) end-to-end rate control only (RC), and (744) end-to-end
rate control and local fair scheduling with per-workflow FIFO queues (FQ+RC).

93

www.manaraa.com

Chapter 5 End-to-end resource allocation and scheduling for micro-services

Figures 5.5 demonstrates system behavior across the three scenarios. When workflow
F, the aggressive tenant, activates at time t=>50s, the resulting overload drives all
workflows to throughput collapse. Given the C# RPC library’s request timeout of
ten seconds’, requests queue up internally in the system, blocking different resources
and thus inflating latencies for all workflows. Instead, with Cicero’s rate-adaptation
(Figure 5.5, top) this is not the case. The rate-limiting throttles workflow F' whereas
other workflows retain their expected throughput. Since F' is an open-loop workload
that does not lower its sending rate despite being throttled, its throughput exhibits
the instability seen in the oscillations in Figure 5.5 (bottom). However, rate-control
alone does not guarantee fair access to local resources at each service. This means
that workflows with a stable rate have a higher degree of presence across system-wide
resource queues, which cause bursty workloads to suffer from head-of-line blocking.
Workflow G thus suffers because of the higher queue occupancies from the other
workflows, indicated by a timeout fraction of 12% (Figure 5.6). Instead, with the
combination of per-service fair-scheduling and rate-control, G is guaranteed progress
at each stage. The key take-away here is that thresholds such as timeouts are
challenging to set correctly system-wide with an end-to-end performance objective
in mind. In practice, such thresholds are often hard-coded [100] and therefore fragile.
On the other hand, Cicero automatically adapts rate limits based on dynamic system
conditions.

5.3.2 Can Cicero meet end-to-end deadline targets?

We replay a trace of 30K requests from a production instance of the large cloud
storage system, which involves a mix of different APIs. Given that the traces do not
indicate deadlines per request, we measure the completion times for each request in
isolation. We then correct for the higher system loads in the experiment by setting
the deadline to four times the base completion time when measured in isolation.
The workload includes APIs that trigger scans involving thousands of sub-tasks and
multiple API calls that only contend for the local resource at the PS. We vary the
number of client threads that generate these requests in a closed loop from 100 to
250 to increase system load.

We compare results across a baseline, FIFO+RC, EDF+RC and LSTF+RC. Ta-
ble 5.4 indicates different percentiles for the latencies normalized by the deadline
(LND). An LND of 1.0 implies that the latency was equal to the deadline. At higher
loads, the baseline incurs increased latencies and thus misses deadlines by large
factors. At the highest tested load of 250 clients generating requests, the baseline’s
average LND is 1.33, while the 95th percentile reaches as high as 4.83. The improve-
ment in LND is evident as soon as we switch on rate-limiting (FIFO+RC), since the

'Request timeouts in some public cloud service APIs [13,23] are often tens of seconds, if not
minutes.

94

www.manaraa.com

5.3 Clicero Evaluation

Clients | Algorithm | LND (Mean) | LND (p95) | LND (p99)
100 Baseline 0.39 0.75 0.98
FIFO+RC 0.34 0.64 0.95
EDF+RC 0.30 0.52 0.71
LSTF+RC 0.32 0.71 0.81
150 Baseline 0.61 1.32 5.68
FIFO+RC 0.33 0.60 0.84
EDF+RC 0.31 0.52 0.69
LSTF+RC 0.3 0.51 0.71
200 Baseline 1.09 2.75 18.47
FIFO+RC 0.71 1.63 2.95
EDF+RC 0.38 0.79 1.17
LSTF+RC 0.34 0.61 0.87
250 Baseline 1.33 4.83 19.71
FIFO+RC 0.98 2.58 10.5
EDF+RC 0.49 1.25 2.15
LSTF+RC 0.46 1.12 1.82

Table 5.4: Mean, 95th percentile and 99th percentile values of latencies normalized
by the deadline (LND) for requests from the production workload. An
LND of 1.0 means the end-to-end latency equaled the deadline.

heavier workflows are throttled and dropped before they cause downstream conges-
tion. With 250 clients, all algorithms with rate-limiting drop close to 21% of requests
since it is infeasible to meet their deadlines (§5.2.5), freeing up resources for other
requests. We also note that LSTF outperforms EDF across all runs. Recall that
EDF only prioritizes requests based on the proximity to the deadline. Therefore, a
request may not make enough progress until it is too late [53]. On the other hand,
LSTF also factors in the remaining service time which can be estimated because of
Cicero’s progress metrics. LSTF here highlights the benefits of scheduling based on
end-to-end characteristics of requests using Cicero.

5.3.3 Can Cicero isolate low-latency workflows from high-throughput
workflows?

A common scenario in cloud storage systems is the co-existence of throughput inten-
sive workflows which involve bulk reads/writes as well as low-latency workflows that
have soft deadlines. Here, we run Cicero with the bottleneck fairness policy in con-
junction with the fair scheduler. We vary the number of throughput intensive clients
from 40 to 200, each of which runs in a closed loop. Every request from this workflow
arriving at a PS triggers twenty sub-tasks to the BS. Six low latency clients (one
workflow each) submit requests at a rate of 10 requests per-second (60 rps in total),

95

www.manaraa.com

Chapter 5 End-to-end resource allocation and scheduling for micro-services

Throughput workflows a=20

120 9 Low-latency workflows
7 21004
o . .
8 90 - Socaiine % 754 Baseline . Cicero]
@ 60-) 2 50+ -
&) 30 - . Cicero S:) 25 - i .
0- % 0 == == = |- |
40 120 160 200 — 40 80 120 160 200
Throughput Intensive Clients # Throughput Intensive Clients
g Low—latency workflows
§600 7 Baseline . Cicero
[0 J
£400
2 200 - - I
(0]
% o0 mm [|
I
2 120 160 200

Throughput Intensive Clients

Figure 5.7: Average latencies and fraction of late requests for latency sensitive work-
flows in the presence of throughput focused clients. The low latency
clients with 300ms deadlines are able to meet a high fraction of dead-
lines (780% hit rate in the presence of 200 throughput intensive clients).

with every request having a 300ms deadline. Figure 5.7 indicates our results. When
only 40 high-throughput clients are active, Cicero and the baseline successfully meet
all deadlines. The baseline presents an improved average latency for the low-latency
clients because it does not incur the added overhead of our DRR-based fair scheduler
(also observed by [126]). However, at higher loads, Cicero’s performance degrades
gracefully, with a high fraction of admitted requests meeting their deadlines ("80%
hit rate in the presence of 200 high throughput clients). Our implementation cannot
guarantee latency for a request unless it (i) compromises on being work-conserving
or (ii) preempts on-going work at any resource (which, for resources such as locks or
connection objects is not practical, and has non-trivial ramifications on application
layer logic). Thus, a request arriving at a service can get unlucky due to bad timing;:
a sub-task from a low-latency workflow may arrive right after a burst of requests
from other workflows were scheduled (and thus suffer from head-of-line blocking at
the local resources). Cicero shapes the high throughput clients to their fair share of
resources alongside the low-latency clients.

5.3.4 Can the rate adaptation react to hotspots from skewed access
patterns?

We now evaluate a scenario where we create a skewed access pattern. Four workflows
activate at different times. A and B are consistently routed to the same PS, causing

96

www.manaraa.com

5.3 Clicero Evaluation

@ Per—workflow latency

E1000- vy TN [E

© U N oI .8 A
E 100 - e "5 B
§ 1000 - L c
o \"#'J.‘._——o.— —————— 9 - D
2 100 - T

CGC) I i i — @

20 40 60 80

Figure 5.8: Skewed workload experiment, with a median smoothened timeseries of
the latencies. Workfow B starts at t=40s, contends at at the same PS
workflow A is being routed through, and doubles its sending rate at
t=60s. Cicero’s rate-limiting shields A from B in both instances. The
background workflows (dashed) are within their fair share of resources
in the system and are thus unaffected.

a hotspot on the local semaphore protected resource. A is an open loop workflow
generated by a single client. B starts at ¢ = 40s with thirty clients, and at ¢ = 60s,
doubles its sending rate with an additional thirty clients joining the system. We
run only the rate-limiter component with FIFO scheduling to isolate the effects of
the former (that is, we only use a FIFO sub-task scheduler at each node). C and
D are background workflows that exert pressure on the BSs. Figure 5.8 shows a
rolling median of the latency timeseries with and without Cicero. In the baseline,
when A enters the system at ¢t = 40s, the surge of client requests immediately cause
contention at all queues at the PS, including the shared sub-task scheduler queue as
well as a semaphore being contended for. The resulting head-of-line blocking inflates
latencies for B. When using Cicero, A experiences a spike in latencies at ¢ = 40s
when B enters the system first. However, twenty seconds later, when B doubles its
sending rate, it forces head-of-line blocking and higher latencies for A as with the
baseline (recall that we are not using local fair-queuing here). However, Cicero soon
computes rates based on the observed costs of B and begins to adapt . When the
rate-limiters and system queues stabilize from the unexpected surge, A retains its
expected latencies, whereas B is throttled at the entry point. Cicero also (correctly)
avoids throttling the background workflows which are not contributing to congestion
(and are not exceeding their fair shares at any node).

5.3.5 Quantile knob sensitivity analysis
Lastly, we demonstrate the impact of the quantile knob in the rate adaptation

mechanism. We consider a scan workflow generated by 180 client threads, which

97

www.manaraa.com

Chapter 5 End-to-end resource allocation and scheduling for micro-services

q=0 g=0.5 g=1

5000 —
4000 —
3000 =
— 2000 4~ P
200 1000 — e SN

e

sS4

180 = 250 —

2009 s s i fomid .-.,.;._-"' NI
150 — '-'-::'..-"':‘:.»‘.._-':-' S g ‘ A

Sd

3
1
H
H
[]
o (regs/sec)

-

N

o
|

TxPut (reqs/sec

I 250 —
0 05 1 200 = o Slassd S ~':..".:-.- Saaf |5 ‘.-'-": - P
Quantile (q) 150 = =7 IR 1= A
I I I I I I 1 I I I
20 40 60 8020 40 60 8020 40 60 80

Time (s)

34

Figure 5.9: ¢ adaptation from the BSs up to the FEs for a workflow, for different
values of the ¢ parameter. BSs adapt their rates independently based on
their demands, PS’s aggregate the rates to calculate their local o using
a quantile, and the FE’s repeat the same procedure against the PS’.

triggers ten back-to-back requests between the PS and BSs. This workflow competes
with a lighter open-loop workflow for system resources, triggering our max-min
fairness policy. We study the impact of the quantile knob on the scan workflow’s
throughput. Figure 5.9 shows a timeseries where each data point represents > o
per-tier in a second for the scan workflow, for different values of . With ¢ = 0, each
PS selects the minimum advertised o from the individual BS processes, and the FEs
repeat the procedure with the PS processes. This leads to conservative o values at
the FEs, leading to low utilization at the BSs. This is evident in that (i) the BS
tier probes for more demand by advertising higher rates (Figure 5.9 (top row, left)),
and (i) lower end-to-end throughput for the workflow (Figure 5.9 (left)). With
q = 1, the rates are maz aggregated, and upstream services thus push more demand
to the BSs. This results in increased congestion at the BSs, which therefore exert
more backpressure by announcing lower rates. With ¢ = 0.5, we strike a balance by
upstream services matching the true capacity of the BSs. With ¢ = 0.5, the o values
at the FE do not oscillate as much as with ¢ = 0 and ¢ = 1, leading to a stable load
at the BS. Also, note that by scaling the rates between each tier according to the
amplification factor a, Cicero correctly sets o at the FEs which match the capacity
of the BS tier.

98

www.manaraa.com

5.4 Discussion

5.4 Discussion

Combining Cicero with smarter load-balancing: Cicero’s mechanisms work
orthogonally to the choice of load-balancing algorithms that a process uses to se-
lect a replica server from another service. As established in Chapter 4, the load-
balancing technique used affects not only the latency distribution but also the overall
system throughput. We believe opportunities exist for combining Cicero’s end-to-
end scheduling policies with various load-balancing mechanisms between tiers. For
instance, requests with tighter slacks may be forwarded to faster replicas. Further-
more, a replica selection scheme that uses rate control as in C3 can inform a process
about the total available throughput to a cluster of replica servers (rather than the
process inferring the total throughput exclusively based on reports from downstream
processes). We believe combining replica selection with the mechanisms in Cicero is
an interesting avenue for future work.

Rate adaptation and service topology: While Cicero’s design has been moti-
vated by real-world SOAs, there are service topologies for which our rate aggregation
scheme needs to be extended to handle corner cases correctly. For instance, all nodes
in a Cassandra cluster are arranged in a ring, wherein each node can receive a re-
quest and then route it internally within the cluster. This makes a single node
both an upstream and a downstream service for the same workflow; therefore, our
aggregation scheme needs a mechanism to break such cycles. Another option here
is for the services communicating with the Cassandra cluster to infer rates to the
cluster on their own (as C3’s rate controller might do). Processes can then use these
measured rates for the rest of the rate adaptation protocol.

Recurring workflows: Currently, Cicero assumes no prior knowledge about a
workflow’s characteristics, and instead, assumes that a workflow exhibits stable av-
erage case behaviour (or one that changes slowly with respect to Cicero’s control
interval). Akin to literature in cluster scheduling [76], Cicero’s design can benefit
from an accurate model of a workflow’s characteristics (to capture properties such
as a periodicity of bursty arrivals).

5.5 Summary

We highlighted the unique challenges with resource management in the context of
SOAs and Microservices. We presented Cicero, which uses a composition of multiple
techniques, including distributed rate control and metadata propagation to enable
scheduling requests with their end-to-end objectives in mind. Our design does not
involve centralized coordination and does not assume prior knowledge of a request’s
characteristics. Through performance evaluations, we demonstrated Cicero’s effec-
tiveness at enforcing diverse policies including providing performance isolation in
extreme settings, reducing end-to-end latencies and meeting deadlines.

99

www.manaraa.com

www.manharaa.com

Conclusions and outlook

As scale-out distributed systems grow larger than ever in response to the pressures of
scale, they face several challenges on the way to achieving predictable performance.
These include complex inter-server request-response patterns, and server-side per-
formance fluctuations arising from skews and hot-spots in data access patterns,
background activities, as well as multi-tenancy. Many of these effects manifest at
very short timescales (10s to 100s of milliseconds), and compromise end-to-end sys-
tem performance. This motivates the need for online, adaptive mechanisms for
distributed systems to remain robust to these dynamic conditions. In this thesis,
we thus present simple-yet-practical adaptive techniques for achieving predictable
performance in the context of two popular classes of large-scale distributed systems:
cloud data-stores as well as micro-services.

This thesis advances the state of the art in the context of distributed replica selec-
tion algorithms for cloud data-stores. The key insight of our solution is the com-
position of two mechanisms: one, a replica ranking heuristic that aims to balance
queue-lengths at servers in proportion to their service-time differences; and second,
distributed rate-adaptation to ensure that the collective demands of all clients match
the capacities of individual servers. This combination of load “balancing” as well
as “regulation” is a key departure from prior literature in replica selection, wherein
the load regulation angle has been ignored.

Furthermore, this thesis presents one of the first solutions for end-to-end resource
management in the context of micro-services and service-oriented architectures. De-
spite the promise of micro-services as a way to build scalable, loosely coupled, and
modular systems, these architectures lead to complex inter-server interactions that

101

www.manaraa.com

Chapter 6 Conclusions and outlook

make resource management and scheduling challenging. This thesis proposes sim-
ple adaptive algorithms, architecturally compatible with today’s popular libraries for
building SOAs, that enable enforcement of end-to-end resource management policies
in an SOA setting.

To wrap up, we summarize the core contributions of this thesis, and highlight direc-
tions for future work.

6.1 Summary
The contributions of this thesis are as follows:

e Adaptive replica selection for cloud data-stores: Chapter 4 makes the
key observation that adaptive replica selection can be used to overcome many
sources of performance variability that plague cloud data-stores. At the same
time, it highlights the challenges of designing effective and practical replica se-
lection mechanisms using extensive measurements of the Cassandra distributed
database. We propose C3, an adaptive replica selection mechanism that is
robust to performance variability in the environment. System evaluations
conducted across a wide-band of operational settings, from using industry-
standard benchmarks on Amazon EC2, to production experiments at Spo-
tify and SoundCloud, confirm the effectiveness of the C3 scheme in reducing
tail-latencies without trading off (and even significantly improving) system
throughput.

¢ End-to-end resource management and scheduling for micro-services:
Chapter 5 brings to attention the challenge of achieving end-to-end perfor-
mance predictability for micro-services and service-oriented architectures, an
emerging class of distributed systems that have received little attention from
the research community. We propose Cicero, a system that enforces a diverse
range of end-to-end resource management policies in a micro-services setting.
We demonstrate the effectiveness of end-to-end, policy-based, adaptive back-
pressure and scheduling, enabled through minimal information exchange be-
tween neighboring services. Our system evaluation validates Cicero’s design;
we demonstrate how Cicero achieves highly desirable performance objectives
such as meeting end-to-end deadlines, preventing cascading failures, as well as
ensuring performance isolation between different tenants.

6.2 Future directions
The challenges of scale continue to push the boundaries of distributed system de-
sign. Yet, several “design relics” from the past lead to lost opportunities for end-to-

end scheduling and resource management in distributed systems. First, individual
servers in WSCs today still run single host operating systems, wherein several layers

102

www.manaraa.com

6.2 Future directions

of abstraction separate userspace programs from hardware resources. Second, the
network in data centers is still seen as a black box by the applications that rely on
them. Third, runtimes and programming languages continue to expose developers
to many distributed system complexities because of the low-level abstractions used.
We now discuss future directions that are tied to each of these three obstacles.

Full stack end-to-end scheduling: Our work on Cicero explored how application-
layer processes, with minimal cooperation, can achieve various end-to-end perfor-
mance objectives and resource management policies. However, Cicero cannot influ-
ence scheduling decisions for requests at lower layers of the operating system stack
(such as at the storage sub-system or network). A first step would be to instrument
the stack as done by IOFlow [135], and have mechanisms to maintain a mapping
of application-layer workflows to sub-system activity. Such a mapping will allow
us to reap opportunities for improved scheduling and performance isolation. How-
ever, more generally, we need to fundamentally re-think the operating system stack
for data center environments [124]. Today, the pooling of hardware resources is
often done above the operating system in userspace using distributed file-systems,
data stores as well as cluster schedulers. Some of this functionality may be best
served instead by a distributed exokernel operating system. This opens avenues
for distributed applications and runtimes to tightly control how they make use of
hardware resources.

Application and network co-design: Several recent hardware trends make for
exciting opportunities in distributed system and network co-design. Recent work
[61,120] has demonstrated the performance benefits that can be reaped if distributed
systems avoid having to make worst-case assumptions about the underlying network.
On this note, we believe there is ample opportunity for building distributed systems
that take advantage of lossless fabrics such as RDMA over converged ethernet as
well as NIC offloading to speed up their critical paths. Furthermore, such co-designs
also lead naturally to the question of cross-layer scheduling. For instance, in our
work on Cicero, we see how micro-services exhibit complex inter-process commu-
nication patterns, which results in network traffic patterns that differ from those
of cluster computing applications. We believe this creates untapped opportunities
for optimizations that involve application-aware scheduling of compute and network
resources in unison.

Execution runtimes for distributed systems: Several classes of distributed
applications can typically be modeled as complex DAGs of compute activity and data
flows across several processes. In data-analytics frameworks such as Apache Tez, this
DAG is often explicit in the programming model itself. An important advantage of
such a programming model is that it lends itself easily for further optimization by the
underlying runtime. However, the information about an application’s DAG structure
often does not percolate throughout all the individual sub-systems in the stack (for
instance, down to the underlying distributed filesystem). Furthermore, there are
several classes of distributed systems where the DAG structure is not even latent

103

www.manaraa.com

Chapter 6 Conclusions and outlook

in the programming model (such as low-latency interactive web-services). Runtimes
for distributed systems that exploit these DAG structures will open opportunities
for end-to-end performance optimization. Such runtimes are especially relevant
considering the growing popularity of the distributed actors approach to building
distributed systems [46], and the optimization opportunities it provides [111].

104

www.manharaa.com

2.1
2.2

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25

5.1
5.2
5.3
5.4

List of Figures

Impact of tail-latencies and request fanouts on query time
The SOA mandate from Steve Yegge’s Google+ post [151]

Categorization

of related work on performance predictability

Replica Selection: Least outstanding requests vs ideal allocation
Load oscillations in Cassandra due to Dynamic Snitching

C3 architecture

C3 replica ranking with linear and cubic scoring functions
C3 client rate adaptation with a cubic function

C3 evaluation:
C3 evaluation:
C3 evaluation:
C3 evaluation:
C3 evaluation:
C3 evaluation:
C3 evaluation:
C3 evaluation:
C3 evaluation:
C3 simulations:

C3 simulations:
C3 simulations:
C3 simulations:
C3 simulations:
C3 simulations:

Latency characteristics when using C3 and DS
Throughput obtained with C3 and Dynamic Snitching
Distribution of reads with C3 and Dynamic Snitching
Number of reads received by a single Cassandra node
Latency characteristics at higher system loads
Latency in the presence of dynamic workloads
Performance when using SSDs instead of HDDs . . .
Sending rate adaptation performed by coordinators .
Impact of consistency level for C3 and DS
Tail-latency in the presence of fluctuating service times
Tail-latency in the presence of skewed demands . . .
Alternative concurrency compensation technique . .
2C heuristic vs C3 without performance fluctuations
Impact of the replica ranking function’s b parameter
Impact of rate adaptation algorithm on server queues

C3 at SoundCloud: Read throughput at different loads
C3 at SoundCloud: Query latency by number of keys requested . . .
C3 at Spotify: Read latency at various percentiles
C3 at Spotify: Distribution of number of fields per row
C3 at Spotify: Read latencies with token-aware clients

SOA example illustrating a set of five services
Cicero: Architecture of every service instance
Cicero rate aggregation: Influence of quantile knob and amplification
Cicero evaluation: Service topology and workflows used.

61

76
83
85
91

105

www.manaraa.com

List of Figures

5.5 Cicero evaluation: Performance isolation experiment. 92

5.6 Cicero evaluation: Dropped requests with fair queuing. 93

5.7 Cicero evaluation: Late request fraction and average latencies. . .. 96

5.8 Cicero evaluation: Latency timeseries with skewed workloads. 97

5.9 Cicero evaluation: Quantile knob sensitivity and o adaptation 98
106

www.manharaa.com

List of Tables

4.1 Replica selection mechanisms in popular NoSQL solutions 41
5.1 Cicero: Example APIs for use by developers 84
5.2 Cicero: Notation used for algorithm description 85
5.3 Cicero design: Metadata tracked and algorithms that use them . .. 87
5.4 Cicero evaluation: Latencies with replayed production workload . . . 95

107

www.manharaa.com

www.manharaa.com

Bibliography

[1] 2013 Founders’ Letter. https://abc.xyz/investor/founders-letters/
2013/. Last accessed: Mar 31, 2016.

[2] 802.1Qbb - Priority-based Flow Control. http://www.ieee802.org/1/
pages/802.1bb.html. 2016.

[3] Akka. http://akka.io/. Last accessed: Sept 25, 2014.
[4] Amazon elb. http://goo.gl/F5A1Em. Last accessed: Sept 24, 2014.

[5] Apache Cassandra. http://cassandra.apache.org/. Last accessed: June
10, 2013.

[6] Apache Cassandra Use Cases. http://planetcassandra.org/
apache-cassandra-use-cases/. Last accessed: Sept 25, 2014.

[7] Apache HBase. https://hbase.apache.org//. Last accessed: Mar 23, 2016.

[8] Astyanax. https://github.com/Netflix/astyanax. Last accessed: Jan 5,
2015.

[9] Auto Scaling in the Amazon Cloud. http://techblog.netflix.com/2012/
01/auto-scaling-in-amazon-cloud.html. Last accessed: Mar 30, 2016.

[10] Cassandra Documentation. http://www.datastax.com/documentation/
cassandra/2.0. Last accessed: Sept 25, 2014.

[11] Cloud Computing Trends: 2016 State of the Cloud Survey.
http://www.rightscale.com/blog/cloud-industry-insights/

cloud-computing-trends-2016-state-cloud-survey. Last accessed:
Apr 1, 2016.

[12] DB-Engines Ranking of Wide Column Stores. http://db-engines.com/en/
ranking/wide+column+store. Last accessed: Sept 25, 2014.

[13] Dealing with DeadlineExceededErrors. https://cloud.google.com/
appengine/articles/deadlineexceedederrors. 2012.

[14] ELS: a latency-based load balancer. https://labs.spotify.com/2015/12/
09/els-part-2/. Last accessed: Apr 1, 2016.

109

ol Lalu Zyl_ﬂbl

www.manharaa.com

https://abc.xyz/investor/founders-letters/2013/
https://abc.xyz/investor/founders-letters/2013/
http://www.ieee802.org/1/pages/802.1bb.html
http://www.ieee802.org/1/pages/802.1bb.html
http://akka.io/
http://goo.gl/F5A1Em
http://cassandra.apache.org/
http://planetcassandra.org/apache-cassandra-use-cases/
http://planetcassandra.org/apache-cassandra-use-cases/
https://hbase.apache.org//
https://github.com/Netflix/astyanax
http://techblog.netflix.com/2012/01/auto-scaling-in-amazon-cloud.html
http://techblog.netflix.com/2012/01/auto-scaling-in-amazon-cloud.html
http://www.datastax.com/documentation/cassandra/2.0
http://www.datastax.com/documentation/cassandra/2.0
http://www.rightscale.com/blog/cloud-industry-insights/cloud-computing-trends-2016-state-cloud-survey
http://www.rightscale.com/blog/cloud-industry-insights/cloud-computing-trends-2016-state-cloud-survey
http://db-engines.com/en/ranking/wide+column+store
http://db-engines.com/en/ranking/wide+column+store
https://cloud.google.com/appengine/articles/deadlineexceedederrors
https://cloud.google.com/appengine/articles/deadlineexceedederrors
https://labs.spotify.com/2015/12/09/els-part-2/
https://labs.spotify.com/2015/12/09/els-part-2/

Bibliography

[15] Kubernetes. http://github.com/kubernetes/kubernetes. Last accessed:
Apr 5, 2016.

[16] Load Balancing and Proxy Configuration. http://docs.basho.com/riak/
1.4.0/cookbooks/Load-Balancing-and-Proxy-Configuration/. Last ac-
cessed: Sept 24, 2014.

[17] Memcached. https://memcached.org/. Last accessed: Mar 23, 2016.
[18] MongoDB. https://www.mongodb.org/. Last accessed: Mar 23, 2016.

[19] Nginx. http://nginx.org/en/docs/http/load_balancing.html. Last ac-
cessed: Sept 24, 2014.

[20] Openstack. https://www.openstack.org/.
[21] Redis. http://redis.io/. Last accessed: Mar 23, 2016.

[22] Riak: AWS Performance Tuning. http://docs.basho.com/riak/latest/
ops/tuning/aws/. Last accessed: Sept 24, 2014.

[23] Setting Timeouts for Blob Service Operations. https://msdn.microsoft.
com/en-us/library/azure/dd179431.aspx. 2016.

[24] Shipment forecast of tablets, laptops and desktop PCs worldwide from 2010
to 2019 (in million units). http://www.statista.com/statistics/272595/
global-shipments-forecast-for-tablets-laptops-and-desktop-pcs/.
Last accessed: Mar 31, 2016.

[25] The Top 20 Valuable Facebook Statistics - Updated December 2015. https:
//zephoria.com/top-15-valuable-facebook-statistics/. Last accessed:
Mar 31, 2016.

[26] TCP-Friendly Multicast Congestion Control (TFMCC): Protocol Specifica-
tion. https://tools.ietf.org/html/rfc4654, 2006.

[27] Erlang at Facebook. https://www.erlang-factory.com/upload/
presentations/31/Eugeneletuchy-ErlangatFacebook.pdf, 2009. Last
accessed: Apr 1, 2016.

[28] MySQL project website. http://www.mysql.de, Dec. 2009. Last accessed:
Apr 1, 2016.

[29] The Life of a Typeahead Query. "https://www.facebook.com/
notes/facebook-engineering/the-life-of-a-typeahead-query/
389105248919/, 2010. Last accessed: Apr 1, 2016.

[30] Netflix: we spend money on movies, not on servers. http://goo.gl/o0Aiyf,
2012. Last accessed: Apr 1, 2016.

[31] Summary of the October 22, 2012 AWS Service Event in the US-East Region,
2012. https://aws.amazon.com/message/680342/.

110

Ol Ll Zyl_i.lbl

www.manharaa.com

http://github.com/kubernetes/kubernetes
http://docs.basho.com/riak/1.4.0/cookbooks/Load-Balancing-and-Proxy-Configuration/
http://docs.basho.com/riak/1.4.0/cookbooks/Load-Balancing-and-Proxy-Configuration/
https://memcached.org/
https://www.mongodb.org/
http://nginx.org/en/docs/http/load_balancing.html
https://www.openstack.org/
http://redis.io/
http://docs.basho.com/riak/latest/ops/tuning/aws/
http://docs.basho.com/riak/latest/ops/tuning/aws/
https://msdn.microsoft.com/en-us/library/azure/dd179431.aspx
https://msdn.microsoft.com/en-us/library/azure/dd179431.aspx
http://www.statista.com/statistics/272595/global-shipments-forecast-for-tablets-laptops-and-desktop-pcs/
http://www.statista.com/statistics/272595/global-shipments-forecast-for-tablets-laptops-and-desktop-pcs/
https://zephoria.com/top-15-valuable-facebook-statistics/
https://zephoria.com/top-15-valuable-facebook-statistics/
https://tools.ietf.org/html/rfc4654
https://www.erlang-factory.com/upload/presentations/31/EugeneLetuchy-ErlangatFacebook.pdf
https://www.erlang-factory.com/upload/presentations/31/EugeneLetuchy-ErlangatFacebook.pdf
http://www.mysql.de
https://www.facebook.com/notes/facebook-engineering/the-life-of-a-typeahead-query/389105248919/
https://www.facebook.com/notes/facebook-engineering/the-life-of-a-typeahead-query/389105248919/
https://www.facebook.com/notes/facebook-engineering/the-life-of-a-typeahead-query/389105248919/
http://goo.gl/oOAiyf
https://aws.amazon.com/message/680342/

Bibliography

[32] Docker at Spotify. http://goo.gl/53t3XN, 2013. Last accessed: Apr 1, 2016.

[33] Bug 727708: Spotify position in support of systemd in the default init de-
bate. https://lists.debian.org/debian-ctte/2014/01/msg00287 .html,
2014. Last accessed: Apr 1, 2016.

[34] Airbnb Shares The Keys To Its Infrastructure. http://www.nextplatform.
com/2015/09/10/airbnb-shares-the-keys-to-its-infrastructure/,
2015. Last accessed: Apr 1, 2016.

[35] ALIZADEH, M., GREENBERG, A., MALTZz, D. A., PADHYE, J., PATEL, P.,
PRABHAKAR, B., SENGUPTA, S., AND SRIDHARAN, M. Data Center TCP
(DCTCP). In Proceedings of the ACM SIGCOMM Conference on Applica-
tions, Technologies, Architectures, and Protocols for Computer Communica-
tion (SIGCOMM) (New York, NY, USA, 2010), ACM, pp. 63-74.

[36] ALIZADEH, M., YANG, S., SHARIF, M., KATTI, S., MCKEOWN, N., PRAB-
HAKAR, B., AND SHENKER, S. pfabric: Minimal near-optimal datacenter
transport. In Proceedings of the ACM SIGCOMM Conference on Applica-
tions, Technologies, Architectures, and Protocols for Computer Communica-
tion (SIGCOMM) (New York, NY, USA, 2013), ACM, pp. 435-446.

[37] ANANTHANARAYANAN, G., KANDULA, S., GREENBERG, A., STOICA, I.,
Lu, Y., SAHA, B., AND HARRIS, E. Reining in the Outliers in Map-reduce
Clusters Using Mantri. In Proceedings of USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI) (Berkeley, CA, USA, 2010),
USENIX Association, pp. 265-278.

[38] ANGEL, S., BALLANI, H., KARAGIANNIS, T., O’SHEA, G., AND THERESKA,
E. End-to-end performance isolation through virtual datacenters. In Proceed-
ings of USENIX Symposium on Operating Systems Design and Implementation
(0SDI) (Berkeley, CA, USA, 2014), USENIX Association, pp. 233-248.

[39] ANTHONY F1sk. Why not to multi-tenant cassandra, http://anthonyfisk.
blogspot.de/2015/06/why-not-to-multi-tenant-cassandra.html. Last
accessed: Mar 31, 2016.

[40] ARrCE, G. R. Nonlinear Signal Processing: A Statistical Approach. Wiley,
2004.

[41] AtikocLu, B., Xu, Y., FRACHTENBERG, E., JIANG, S., AND PALECZNY,
M. Workload Analysis of a Large-scale Key-value Store. In Proceedings of the
ACM SIGMETRICS International Conference on Measurement and Modeling
of Computer Systems (New York, NY, USA, 2012), ACM, pp. 53-64.

[42] B. SIGELMAN ET AL. Dapper, a large-scale distributed systems tracing infras-
tructure. Tech. rep., Google, Inc., 2010.

111

www.manaraa.com

http://goo.gl/53t3XN
https://lists.debian.org/debian-ctte/2014/01/msg00287.html
http://www.nextplatform.com/2015/09/10/airbnb-shares-the-keys-to-its-infrastructure/
http://www.nextplatform.com/2015/09/10/airbnb-shares-the-keys-to-its-infrastructure/
http://anthonyfisk.blogspot.de/2015/06/why-not-to-multi-tenant-cassandra.html
http://anthonyfisk.blogspot.de/2015/06/why-not-to-multi-tenant-cassandra.html

Bibliography

[43] BARROSO, L. A., CLIDARAS, J., AND HOLZLE, U. The Datacenter As a Com-
puter: An Introduction to the Design of Warehouse-Scale Machines, 2nd ed.
Synthesis Lectures on Computer Architecture. Morgan and Claypool Publish-
ers, 2013.

[44] BARROSO, L. A., DEAN, J., AND HOLZLE, U. Web search for a planet: The
google cluster architecture. IEEE Micro 23, 2 (Mar. 2003), 22-28.

[45] BEAVER, D., KumMmAR, S., L1, H. C., SOBEL, J., AND VAJGEL, P. Finding a
needle in haystack: Facebook’s photo storage. In Proceedings of USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI) (Berkeley,
CA, USA, 2010), USENIX Association, pp. 1-8.

[46] BERNSTEIN, P. A., Bykov, S., GELLER, A., KLioT, G., AND THELIN, J.

Orleans: Distributed virtual actors for programmability and scalability. Tech.
Rep. MSR-TR-2014-41, March 2014.

[47] Bispro, C. F. The single-server scheduling problem with convex costs. Queue-
ing Systems 73, 3 (2013).

[48] BouTiN, E., EKANAYAKE, J., LIN, W., SHI, B., ZHou, J., QIAN, Z., WU,
M., AND ZHOU, L. Apollo: scalable and coordinated scheduling for cloud-
scale computing. In Proceedings of USENIX Symposium on Operating Systems
Design and Implementation (OSDI) (Broomfield, CO, Oct. 2014), USENIX
Association, pp. 285-300.

[49] BREWER, E. A. Lessons from giant-scale services. Internet Computing, IEEE
5,4 (2001), 46-55.

[50] BRONSON, N., AMSDEN, Z., CABRERA, G., CHAKKA, P., Dimov, P., DING,
H., FERRIS, J., GIARDULLO, A., KULKARNI, S., Li, H., MARCHUKOV,
M., PETrROV, D., PUzZAR, L., SONG, Y. J., AND VENKATARAMANI, V.
Tao: Facebook’s distributed data store for the social graph. In Proceedings of
USENIX Annual Technical Conference (ATC) (San Jose, CA, 2013), USENIX,
pp. 49-60.

51] BRUTLAG, J. Speed Matters. http://googleresearch.blogspot.com/
goog g
2009/06/speed-matters.html. Last accessed: Sept 24, 2014.

[52] CHANG, F., DEAN, J., GHEMAWAT, S., HsieH, W. C., WALLACH, D. A.,
Burrows, M., CHANDRA, T., FIKES, A., AND GRUBER, R. E. Bigtable: A
Distributed Storage System for Structured Data. ACM Trans. Comput. Syst.
26, 2 (June 2008), 4:1-4:26.

[53] CHEN, S., STANKOVIC, J. A., KUROSE, J. F., AND TOWSLEY, D. Perfor-

mance evaluation of two new disk scheduling algorithms for real-time systems.
Real-Time Systems 3, 3 (1991), 307-336.

112

www.manaraa.com

http://googleresearch.blogspot.com/2009/06/speed-matters.html
http://googleresearch.blogspot.com/2009/06/speed-matters.html

Bibliography

[54] CHOWDHURY, M., AND STOICA, I. Efficient coflow scheduling without prior
knowledge. In Proceedings of the ACM SIGCOMM Conference on Applica-
tions, Technologies, Architectures, and Protocols for Computer Communica-
tion (SIGCOMM) (New York, NY, USA, 2015), ACM, pp. 393-406.

[55] CHOWDHURY, M., ZAHARIA, M., Ma, J., JORDAN, M. I., AND STOICA,
I. Managing data transfers in computer clusters with orchestra. SIGCOMM
Comput. Commun. Rev. 41, 4 (Aug. 2011), 98-109.

[56] CHOWDHURY, M., ZHONG, Y., AND StOICA, I. Efficient coflow scheduling
with varys. In Proceedings of the ACM SIGCOMM Conference on Applica-
tions, Technologies, Architectures, and Protocols for Computer Communica-
tion (SIGCOMM) (New York, NY, USA, 2014), ACM, pp. 443-454.

[57] CHRISTENSEN, B. Application Resilience in a Service-oriented Architecture.
http://goo.gl/0TKDmQ, 2013. Last accessed: Apr 1, 2016.

[58] COOPER, B. F., SILBERSTEIN, A., TAM, E., RAMAKRISHNAN, R., AND
SEARS, R. Benchmarking Cloud Serving Systems with YCSB. In Proceedings
of the ACM Symposium on Cloud Computing (SoCC) (New York, NY, USA,
2010), ACM, pp. 143-154.

[59] CorBETT, J. C., DEAN, J., EPSTEIN, M., FIKES, A., FrosT, C., FUR-
MAN, J., GHEMAWAT, S., GUBAREV, A., HEISER, C., HOCHSCHILD, P.,
Hsien, W., KANTHAK, S., KogaN, E., L1, H., LLoyD, A., MELNIK, S.,
MwAURA, D., NAGLE, D., QUINLAN, S., Rao, R., RoLig, L., Saito, Y.,
SZYMANIAK, M., TAYLOR, C., WANG, R., AND WOODFORD, D. Spanner:
Google’s globally-distributed database. In 10th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI 12) (Hollywood, CA, Oct.
2012), USENIX Association, pp. 261-264.

[60] CROVELLA, M., FRANGIOSO, R., AND HARCHOL-BALTER, M. Connection
scheduling in web servers. In USENIX Symposium on Internet Technologies
and Systems (1999), vol. 10, pp. 243-254.

[61] DANG, H. T., Sciascia, D., CanNiNi, M., PEDONE, F., AND SOULE, R.
Netpaxos: Consensus at network speed. In Proceedings of the 1st ACM SIG-
COMM Symposium on Software Defined Networking Research (New York, NY,
USA, 2015), ACM, pp. 5:1-5:7.

[62] DEAN, J., AND BARROSO, L. A. The Tail At Scale. Communications of the
ACM 56 (2013), 74-80.

[63] DECANDIA, G., HASTORUN, D., JAMPANI, M., KAKULAPATI, G., LAKSH-
MAN, A., PILCHIN, A., SIVASUBRAMANIAN, S., VOSSHALL, P., AND VOGELS,
W. Dynamo: Amazon’s Highly Available Key-value Store. In ACM Sympo-
sium on Operating systems principles (SOSP) (New York, NY, USA, 2007),
ACM, pp. 205-220.

113

www.manaraa.com

http://goo.gl/0TKDmQ

Bibliography

[64] DELGADO, P., DiNnu, F., KERMARREC, A.-M., AND ZWAENEPOEL, W.
Hawk: Hybrid datacenter scheduling. In Proceedings of USENIX Annual Tech-
nical Conference (ATC) (Santa Clara, CA, July 2015), USENIX Association,
pp- 499-510.

[65] DEMERS, A., KESHAV, S., AND SHENKER, S. Analysis and simulation of
a fair queueing algorithm. In Symposium Proceedings on Communications
Architectures and Protocols (New York, NY, USA, 1989), SIGCOMM ’89,
ACM, pp. 1-12.

[66] DOGAR, F. R., KARAGIANNIS, T., BALLANI, H., AND ROWSTRON, A. De-
centralized task-aware scheduling for data center networks. In Proceedings
of the ACM SIGCOMM Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communication (SIGCOMM) (2014),
ACM, pp. 431-442.

[67] DUKKIPATI, N., AND MCKEOWN, N. Why flow-completion time is the right
metric for congestion control. SIGCOMM Comput. Commun. Rev. 36, 1 (Jan.
2006), 59-62.

[68] ELL1s, J. How not to benchmark Cassandra: a case study. http://goo.gl/
SS9YCN, 2014. Last accessed: Apr 1 2016.

[69] ENGINEERING, F. Under the hood: MySQL Pool Scanner (MPS). https:
//goo.gl/qIw8ZI, 2013. Last accessed: Apr 1, 2016.

[70] ErL, T. Service-Oriented Architecture (SOA): Concepts, Technology, and
Design . Prentice Hall, 2005.

[71] FERGUSON, A. D., BopIk, P., KANDULA, S., BouTIN, E., AND FONSECA,
R. Jockey: Guaranteed Job Latency in Data Parallel Clusters. In Proceedings
of the European Conference on Computer Systems (EuroSys) (New York, NY,
USA, 2012), ACM, pp. 99-112.

[72] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. The google file system.
In ACM SIGOPS operating systems review (2003), vol. 37, ACM, pp. 29-43.

[73] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. The google file system. In

Proceedings of the Nineteenth ACM Symposium on Operating Systems Princi-
ples (New York, NY, USA, 2003), SOSP ’03, ACM, pp. 29-43.

[74] GHODSI, A., ZAHARIA, M., HINDMAN, B., KONWINSKI, A., SHENKER, S.,
AND STOICA, I. Dominant resource fairness: Fair allocation of multiple re-
source types. In Proceedings of the 8th USENIX Conference on Networked
Systems Design and Implementation (Berkeley, CA, USA, 2011), Proceedings
of USENIX Symposium on Networked Systems Design and Implementation
(NSDI), USENIX Association, pp. 323-336.

114

www.manaraa.com

http://goo.gl/SS9YCN
http://goo.gl/SS9YCN
https://goo.gl/qJw8ZI
https://goo.gl/qJw8ZI

Bibliography

[75] Goa, 1., GICEVA, J., SCHWARZKOPF, M., VAswani, K., VyTinioTis, D.,
RamMALINGAM, G., CosTAa, M., MURRAY, D. G., HAND, S., AND ISARD,
M. Broom: Sweeping out garbage collection from big data systems. In 15th
Workshop on Hot Topics in Operating Systems (HotOS XV) (Kartause Ittin-
gen, Switzerland, May 2015), USENIX Association.

[76] GRANDL, R., ANANTHANARAYANAN, G., KANDULA, S., RAO, S., AND
AKELLA, A. Multi-resource packing for cluster schedulers. In Proceedings
of the ACM SIGCOMM Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communication (SIGCOMM) (2014),
ACM, pp. 455-466.

[77] GrRAY, W. D., AND BOEHM-DAvIs, D. Milliseconds matter: An introduction
to microstrategies and to their use in describing and predicting interactive
behavior. Journal of Experimental Psychology: Applied 6 (2000).

[78] GROSVENOR, M. P., ScHwArzKOPF, M., Gog, I., Warson, R. N.,
MOORE, A. W., HAND, S., AND CROWCROFT, J. Queues Don’t Matter
When You Can JUMP Them! In Proceedings of USENIX Symposium on
Networked Systems Design and Implementation (NSDI) (Oakland, CA, May
2015), USENIX Association, pp. 1-14.

[79] GurATl, A., AHMAD, I., WALDSPURGER, C. A., ET AL. Parda: Proportional
allocation of resources for distributed storage access. In Proccedings of the
International Conference on File and Storage Technologies (FAST) (Berkeley,
CA, USA, 2009), USENIX Association, pp. 85-98.

[80] GuLATI, A., MERCHANT, A., AND VARMAN, P. J. mclock: handling through-
put variability for hypervisor io scheduling. In Proceedings of USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI) (Berkeley,
CA, USA, 2010), USENIX Association, pp. 437-450.

[81] Guo, Z., McDIrMID, S., YANG, M., ZHUANG, L., ZHANG, P., Lvuo, Y.,
BERGAN, T., MUSUVATHI, M., ZHANG, Z., AND ZHOU, L. Failure recovery:

When the cure is worse than the disease. In Presented as part of the 14th
Workshop on Hot Topics in Operating Systems (Berkeley, CA, 2013), USENIX.

[82] HA, S., RHEE, 1., AND Xu, L. CUBIC: A New TCP-Friendly High-Speed
TCP Variant. SIGOPS Oper. Syst. Rev. 42, 5 (2008).

[83] HADOOP, A. http://hadoop.apache.org/. Last accessed: June 10, 2013.

[84] HAO, M., SOUNDARARAJAN, G., KENCHAMMANA-HOSEKOTE, D., CHIEN,
A. A., AND GuNawl, H. S. The tail at store: A revelation from millions
of hours of disk and ssd deployments. In 14th USENIX Conference on File
and Storage Technologies (FAST 16) (Santa Clara, CA, Feb. 2016), USENIX
Association, pp. 263-276.

115

www.manaraa.com

Bibliography

[85] HARRY, B. Explanation of July 18th outage. http://goo.gl/DPuJBm, 2014.
Last accessed: Apr 1, 2016.

[86] HERRTWICH, R. G. An introduction to real-time scheduling. International
Computer Science Institute, 1990.

[87] HoNG, C.-Y., CAESAR, M., AND GODFREY, P. B. Finishing flows quickly
with preemptive scheduling. In Proceedings of the ACM SIGCOMM Confer-
ence on Applications, Technologies, Architectures, and Protocols for Computer
Communication (SIGCOMM) (New York, NY, USA, 2012), SIGCOMM ’12,
ACM, pp. 127-138.

[88] JALAPARTI, V., BopIK, P., KANDULA, S., MENACHE, 1., RYBALKIN, M.,
AND YAN, C. Speeding up Distributed Request-Response Workflows. In
Proceedings of the ACM SIGCOMM Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Communication (SIGCOMM)
(New York, NY, USA, 2013), ACM, pp. 219-230.

[89] JaNG, K., SHERRY, J., BALLANI, H., AND MONCASTER, T. Silo: Predictable
message latency in the cloud. In Proceedings of the ACM SIGCOMM Confer-
ence on Applications, Technologies, Architectures, and Protocols for Computer
Communication (SIGCOMM) (New York, NY, USA, 2015), ACM, pp. 435—
448.

[90] JoNES, E. Retries considered harmful. http://www.evanjones.ca/
retries-considered-harmful .html, 2015. Last accessed: Apr 1, 2016.

[91] KaLaNTzZIS, C. Eventual Consistency != Hopeful Consistency, talk at Cassan-
dra Summit. https://www.youtube.com/watch?v=A6qzx_HE3EU, 2013. Last
accessed: Apr 1, 2016.

[92] KaLaNTZIS, C. Revisiting 1 Million Writes per second. http://goo.gl/
Y4Fr7Y, 2014. Last accessed: Apr 1, 2016.

[93] KAMBADUR, M., MOSELEY, T., HANK, R., AND Kim, M. A. Measuring
Interference Between Live Datacenter Applications. In Proceedings of the In-
ternational Conference on High Performance Computing, Networking, Storage
and Analysis (Los Alamitos, CA, USA, 2012), SC ’12, IEEE Computer Society
Press, pp. 51:1-51:12.

[94] KAPOOR, R., PORTER, G., TEWARI, M., VOELKER, G. M., AND VAHDAT,
A. Chronos: Predictable Low Latency for Data Center Applications. In
Proceedings of the ACM Symposium on Cloud Computing (SoCC) (New York,
NY, USA, 2012), SoCC ’12, ACM, pp. 9:1-9:14.

[95] L1, J., SHARMA, N. K., Ports, D. R. K., AND GRIBBLE, S. D. Tales of
the Tail: Hardware, OS, and Application-level Sources of Tail Latency. In
Proceedings of the ACM Symposium on Cloud Computing (SoCC) (New York,
NY, USA, 2014), ACM, pp. 9:1-9:14.

116

www.manaraa.com

http://goo.gl/DPuJBm
http://www.evanjones.ca/retries-considered-harmful.html
http://www.evanjones.ca/retries-considered-harmful.html
https://www.youtube.com/watch?v=A6qzx_HE3EU
http://goo.gl/Y4Fr7Y
http://goo.gl/Y4Fr7Y

Bibliography

[96] LiLJENCRANTZ, A. How Not to Use Cassandra, talk at Cassandra Summit.
https://www.youtube.com/watch?v=0u-EKJBPrj8, 2013. Last accessed: Apr
1, 2016.

[97] Liu, Y., Lo PrEsTI, F., Misra, V., TowsLEy, D., AND Gu, Y. Fluid
models and solutions for large-scale ip networks. In ACM SIGMETRICS Per-
formance Fvaluation Review (2003), vol. 31, ACM, pp. 91-101.

[98] LumB, C. R., AND GOLDING, R. D-SPTF: Decentralized Request Distribu-
tion in Brick-based Storage Systems. SIGOPS Oper. Syst. Rev. 38, 5 (Oct.
2004), 37-47.

[99] MaAs, M., HArRris, T., Asanovi¢, K., AND KUBIATOWICZ, J. Trash day:
Coordinating garbage collection in distributed systems. In 15th Workshop on
Hot Topics in Operating Systems (HotOS XV) (Berkeley, CA, USA, 2015),
USENIX Association, pp. 1-1.

[100] MACE, J., BobpIk, P., FONSEcA, R., AND MuUSUVATHI, M. Retro: Targeted
resource management in multi-tenant distributed systems. In 12th USENIX

Symposium on Networked Systems Design and Implementation (NSDI 15)
(Oakland, CA, May 2015), USENIX Association, pp. 589-603.

[101] McCuLLOUGH, J. C., DUNAGAN, J., WOLMAN, A., AND SNOEREN, A. C.
Stout: An Adaptive Interface to Scalable Cloud Storage. In USENIX ATC
(Berkeley, CA, USA, 2010), USENIX Association, pp. 4-4.

[102] McKENNEY, P. E. Stochastic Fair Queing. In INFOCOM (1990).

[103] MITZENMACHER, M. How Useful Is Old Information? IEEE Trans. Parallel
Distrib. Syst. 11, 1 (Jan. 2000).

[104] MITZENMACHER, M. The power of two choices in randomized load balancing.
IEEE Trans. Parallel Distrib. Syst. 12, 10 (Oct. 2001).

[105] Munns, C. I Love APIs 2015: Microservices at Amazon. http://goo.gl/
aVWlpY, 2015. Last accessed: Apr 1, 2016.

[106] MURALIDHAR, S., LLoyp, W., Roy, S., HiLL, C., LiN, E., Liu, W., PAN,
S., SHANKAR, S., SIVAKUMAR, V., TANG, L., AND KUMAR, S. f4: Face-

book’s warm blob storage system. In 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14) (Broomfield, CO, Oct. 2014),
USENIX Association, pp. 383-398.

[107] NETFLIX. Embracing the Differences : Inside the Net-
flix ~ API Redesign. http://techblog.netflix.com/2012/07/
embracing-differences-inside-netflix.html, 2012.

[108] NETFLIX. Introducing Hystrix for Resilience Engineering. http://goo.gl/
h9brPO0, 2012. Last accessed: Apr 1, 2016.

117

www.manaraa.com

https://www.youtube.com/watch?v=0u-EKJBPrj8
http://goo.gl/aVWlpY
http://goo.gl/aVWlpY
http://techblog.netflix.com/2012/07/embracing-differences-inside-netflix.html
http://techblog.netflix.com/2012/07/embracing-differences-inside-netflix.html
http://goo.gl/h9brP0
http://goo.gl/h9brP0

Bibliography

[109] NETFLIX. Netflix Operations: Part I, Going Distributed. http://goo.gl/
rE1lQem, 2012. Last accessed: Apr 1, 2016.

[110] NETFLIX. Strategy for tuning the hystrix configuratio. https://github.com/
Netflix/Hystrix/issues/866, 2015.

[111] NEWELL, A., KrLioT, G., MENACHE, 1., GOPALAN, A., AKIYAMA, S., AND
SILBERSTEIN, M. Optimizing distributed actor systems for dynamic interac-
tive services. In Proceedings of the Furopean Conference on Computer Systems
(EuroSys) (April 2016), ACM — Association for Computing Machinery.

[112] NEWMAN, S. Building Microservices. O’Reilly Media, 2015.

[113] NGINX. Adopting Microservices at Netflix: Lessons for Team and Process
Design. https://goo.gl/KOrUfT, 2015. Last accessed: Apr 1, 2016.

[114] NisHTALA, R., FucaL, H., GriMM, S., KwiaTtkowskl, M., Leg, H., Li,
H. C., McELRrOY, R., PALECZNY, M., PEEK, D., SAAB, P., STAFFORD, D.,
TunG, T., AND VENKATARAMANI, V. Scaling Memcache at Facebook. In
Proceedings of USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI) (Berkeley, CA, USA, 2013), USENIX Association, pp. 385—
398.

[115] NUYENS, M., AND WIERMAN, A. The foreground-background queue: a sur-
vey. Performance evaluation 65, 3 (2008), 286-307.

[116] OusTERHOUT, K., WENDELL, P., ZAHARIA, M., AND STOICA, I. Spar-
row: Distributed, Low Latency Scheduling. In ACM Symposium on Operating

systems principles (SOSP) (New York, NY, USA, 2013), ACM, pp. 69-84.

[117] PAREKH, A. K., AND GALLAGHER, R. G. A generalized processor sharing
approach to flow control in integrated services networks: the multiple node
case. IEEE/ACM Transactions on Networking (ToN) 2, 2 (1994), 137-150.

[118] Pora, L., KuMmAR, G., CHOWDHURY, M., KRISHNAMURTHY, A., RAT-
NASAMY, S., AND STOICA, I. FairCloud: Sharing the Network in Cloud
Computing. In Proceedings of the ACM SIGCOMM Conference on Applica-
tions, Technologies, Architectures, and Protocols for Computer Communica-
tion (SIGCOMM) (New York, NY, USA, 2012), ACM, pp. 187-198.

[119] PoprA, L., YALAGANDULA, P., BANERJEE, S., MoGuUL, J. C., TURNER, Y.,
AND SANTOS, J. R. ElasticSwitch: Practical Work-Conserving Bandwidth
Guarantees for Cloud Computing. In Proceedings of the ACM SIGCOMM
Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communication (SIGCOMM) (2013).

[120] Ports, D. R. K., L1, J., L1u, V., SHARMA, N. K., AND KRISHNAMURTHY,

A. Designing distributed systems using approximate synchrony in data center
networks. In Proc. USENIX NSDI ’15 (Berkeley, CA, USA, 2015), pp. 43-57.

118

www.manaraa.com

http://goo.gl/rElQem
http://goo.gl/rElQem
https://github.com/Netflix/Hystrix/issues/866
https://github.com/Netflix/Hystrix/issues/866
https://goo.gl/KOrUfT

Bibliography

[121] RoussopouLos, M., AND BAKER, M. Practical Load Balancing for Content
Requests in Peer-to-Peer Networks. Distributed Computing 18, 6 (2006).

[122] SANFILIPPO, S. Redis latency spikes and the 99th percentile. http://
antirez.com/news/83, 2014. Last accessed: Apr 1, 2016.

[123] ScHAD, J., DITTRICH, J., AND QUIANE-RUIZ, J.-A. Runtime Measurements
in the Cloud: Observing, Analyzing, and Reducing Variance. VLDB Endow-
ment 3, 1-2 (Sept. 2010), 460-471.

[124] SCHWARZKOPF, M., GROSVENOR, M. P., AND HAND, S. New wine in old
skins: The case for distributed operating systems in the data center. In Pro-
ceedings of the 4th Asia-Pacific Workshop on Systems (New York, NY, USA,
2013), APSys ’13, ACM, pp. 9:1-9:7.

[125] SHREEDHAR, M., AND VARGHESE, G. Efficient fair queueing using deficit
round robin. SIGCOMM Comput. Commun. Rev. 25, 4 (Oct. 1995), 231-242.

[126] SHUE, D., FREEDMAN, M. J., AND SHAIKH, A. Performance isolation and
fairness for multi-tenant cloud storage. In Proceedings of the 10th USENIX
Conference on Operating Systems Design and Implementation (Berkeley, CA,
USA, 2012), OSDI'12, USENIX Association, pp. 349-362.

[127] SOUDERS, S. Velocity and the bottom line. http://radar.oreilly.com/
2009/07/velocity-making-your-site-fast.html, 2009. Last accessed:
Apr 1, 2016.

[128] SOUNDCLOUD. Building products at SoundCloud - part I: Dealing with the
monolith. https://goo.gl/Qra2tA, 2014. Last accessed: Apr 1, 2016.

[129] SRIKANT, R. The mathematics of Internet congestion control. Springer Science
& Business Media, 2012.

[130] STAROBINSKI, D., AND SiDI, M. Stochastically bounded burstiness for com-
munication networks. In INFOCOM’99. FEighteenth Annual Joint Conference
of the IEEE Computer and Communications Societies. Proceedings. IEEE
(1999), vol. 1, IEEE, pp. 36-42.

[131] STEWART, C., CHAKRABARTI, A., AND GRIFFITH, R. Zoolander: Efficiently
Meeting Very Strict, Low-Latency SLOs. In Proceedings of the International
Conference on Autonomic Computing (ICAC) (2013).

[132] SumBALY, R., KREPS, J., GAO, L., FEINBERG, A., SOMAN, C., AND SHAH,
S. Serving Large-scale Batch Computed Data with Project Voldemort. In
Proccedings of the International Conference on File and Storage Technologies
(FAST) (Berkeley, CA, USA, 2012), USENIX Association, pp. 18-18.

119

www.manaraa.com

http://antirez.com/news/83
http://antirez.com/news/83
http://radar.oreilly.com/2009/07/velocity-making-your-site-fast.html
http://radar.oreilly.com/2009/07/velocity-making-your-site-fast.html
https://goo.gl/Qra2tA

Bibliography

[133] SUREsH, L., CANINI, M., SCHMID, S., AND FELDMANN, A. C3: Cutting tail
latency in cloud data stores via adaptive replica selection. In 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 15)
(Oakland, CA, May 2015), USENIX Association, pp. 513-527.

[134] Tassiuras, L. Adaptive back-pressure congestion control based on local in-
formation. Automatic Control, IEEE Transactions on 40, 2 (1995), 236—250.

[135] THERESKA, E., BALLANI, H., O’SHEA, G., KARAGIANNIS, T., ROWSTRON,
A., TaLpey, T., BLAck, R., AND ZHU, T. IOFlow: A Software-Defined
Storage Architecture. In ACM Symposium on Operating systems principles
(SOSP) (New York, NY, USA, 2013), ACM, pp. 182-196.

[136] TONSE, S. MicroServices at Netflix - challenges of scale. http://goo.gl/
9j5wSv, 2014. Last accessed: Apr 1, 2016.

[137] TWITTER. Finagle: A Protocol-Agnostic RPC System. https://goo.gl/
ITebZs, 2011. Last accessed: Apr 1, 2016.

[138] UBER. Service-oriented Architecture: Scaling the Uber Codebase as We Grow.
https://eng.uber.com/soa/, 2015. Last accessed: Apr 1, 2016.

[139] vAN MIEGHEM, J. A. Dynamic Scheduling with Convex Delay Costs: The
Generalized $c|mu$ Rule. The Annals of Applied Probability 5 (1995).

[140] Vasi¢, N., Novakovi¢, D., Miucin, S., KosTi¢, D., AND BIANCHINI, R.
Dejavu: accelerating resource allocation in virtualized environments. In ACM
SIGARCH computer architecture news (2012), vol. 40, ACM, pp. 423-436.

[141] VENKATARAMANI, V., AMSDEN, Z., BrRONSON, N., CaBrReraA III, G.,
CHAKKA, P., Dimov, P., DiNG, H., FERRIS, J., GIARDULLO, A., HOON,
J., KULKARNI, S., LAWRENCE, N., MARCHUKOV, M., PETROV, D., AND
Puzar, L. TAO: How Facebook Serves the Social Graph. In Proceedings of
the ACM SIGMOD International Conference on Management of Data (2012).

[142] VERMA, A., PEDROSA, L., KorurpoLU, M. R., OPPENHEIMER, D., TUNE,
E., AND WILKES, J. Large-scale cluster management at Google with Borg.
In Proceedings of the European Conference on Computer Systems (EuroSys)
(Bordeaux, France, 2015), ACM, pp. 18:1-18:17.

[143] VuLiMmIRrI, A., GODFREY, P. B., MiTTAL, R., SHERRY, J., RATNASAMY, S.,
AND SHENKER, S. Low Latency via Redundancy. In CoNEXT (New York,
NY, USA, 2013), ACM, pp. 283-294.

[144] WANG, A., VENKATARAMAN, S., ALSPAUGH, S., KATZ, R., AND STOICA, I.
Cake: Enabling High-level SLOs on Shared Storage Systems. In Proceedings
of the ACM Symposium on Cloud Computing (SoCC) (New York, NY, USA,
2012), SoCC 12, ACM, pp. 14:1-14:14.

120

www.manaraa.com

http://goo.gl/9j5wSv
http://goo.gl/9j5wSv
https://goo.gl/ITebZs
https://goo.gl/ITebZs
https://eng.uber.com/soa/

Bibliography

[145] WANG, H., AND VARMAN, P. Balancing Fairness and Efficiency in Tiered
Storage Systems with Bottleneck-aware Allocation. In FAST (Berkeley, CA,
USA, 2014), USENIX Association, pp. 229-242.

[146] WEL, D. X., JiN, C., Low, S. H., AND HEGDE, S. Fast tcp: motivation, ar-
chitecture, algorithms, performance. IEEE/ACM Transactions on Networking
(ToN) 14, 6 (2006), 1246-1259.

[147) WiLsoN, C., BaLLani, H., KARAGIANNIS, T., AND ROWTRON, A. Better
never than late: meeting deadlines in datacenter networks. In Proceedings of
the ACM SIGCOMM Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication (SIGCOMM) (New York, NY,
USA, 2011), ACM, pp. 50-61.

[148] Wu, Z., Yu, C., AND V. MADHYASTHA, H. CosTLO: Cost-Effective Redun-
dancy for Lower Latency Variance on Cloud Storage Services. In Proceedings

of USENIX Symposium on Networked Systems Design and Implementation
(NSDI) (Berkeley, CA, USA, 2015), USENIX Association, pp. 543-557.

[149] Xu, L., HArrousH, K., AND RHEE, I. Binary increase congestion control
(bic) for fast long-distance networks. In INFOCOM 2004. Twenty-third An-
nualJoint Conference of the IEEE Computer and Communications Societies
(2004), vol. 4, IEEE, pp. 2514-2524.

[150] XU, Y., MUSGRAVE, Z., NOBLE, B., AND BAILEY, M. Bobtail: Avoiding
Long Tails in the Cloud. In Proceedings of USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI) (Berkeley, CA, USA,
2013), USENIX Association, pp. 329-342.

[151] YEGGE, S. Google+ post. https://plus.google.com/+RipRowan/posts/
eVeouesvaVX, 2011. Last accessed: Apr 1, 2016.

[152] ZAHARIA, M., BORTHAKUR, D., SEN SArmA, J., ELMELEECGY, K.,
SHENKER, S., AND STOICA, I. Delay scheduling: a simple technique for
achieving locality and fairness in cluster scheduling. In Proceedings of the Eu-
ropean Conference on Computer Systems (EuroSys) (New York, NY, USA,
2010), ACM, pp. 265-278.

[153] ZAHARIA, M., KONWINSKI, A., JOSEPH, A. D., KaTz, R., AND STOICA, 1.
Improving MapReduce Performance in Heterogeneous Environments. In Pro-

ceedings of USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI) (Berkeley, CA, USA, 2008), USENIX Association, pp. 29-42.

[154] Zuu, T., TumanNov, A., KozucH, M. A., HARCHOL-BALTER, M., AND
GANGER, G. R. PriorityMeister: Tail Latency QoS for Shared Networked
Storage. In Proceedings of the ACM Symposium on Cloud Computing (SoCC)
(New York, NY, USA, 2014), ACM, pp. 29:1-29:14.

121

www.manaraa.com

https://plus.google.com/+RipRowan/posts/eVeouesvaVX
https://plus.google.com/+RipRowan/posts/eVeouesvaVX

	Title page
	Abstract
	Zusammenfassung
	Contents
	1 Introduction
	1.1 Challenges to predictable performance
	1.2 The need for adaptive mechanisms
	1.3 Thesis goal and scope
	1.4 Contributions
	1.5 Outline

	2 Warehouse scale computing: background, challenges and objectives
	2.1 From client-centric to server-centric computing
	2.2 Towards warehouse-scale computers
	2.3 Commodification of WSCs
	2.4 Software for WSCs: From scale-up to scale-out distributed systems
	2.5 Predictable performance: Metrics of concern
	2.6 Challenges to predictable performance in WSCs
	2.6.1 Performance fluctuations are the norm rather than the exception
	2.6.2 Request processing involves tens to thousands of servers
	2.6.3 Performance variability exacerbates at scale

	2.7 Goal: Short-term adaptations to performance variability for online services
	2.8 System types considered in this thesis
	2.8.1 Cloud data stores
	2.8.2 Service-oriented architectures and micro-services

	2.9 Summary

	3 Related work
	3.1 Using redundancy to mitigate outliers
	3.2 Resource allocation and scheduling for storage systems
	3.3 Resource allocation and scheduling for general distributed systems
	3.4 Offline, cluster computing
	3.5 Data-center networking
	3.6 Summary

	4 Reducing tail-latency for cloud data-stores
	4.1 The Challenge of Replica Selection
	4.1.1 Performance fluctuations are the norm
	4.1.2 Load-based replica selection is hard
	4.1.3 Dynamic Snitching's weaknesses

	4.2 C3 Design
	4.2.1 Replica ranking
	4.2.2 Rate control and backpressure
	4.2.3 Putting everything together

	4.3 C3 implementation
	4.4 C3 Evaluation
	4.4.1 Evaluation using synthetic benchmarks
	4.4.2 Evaluation Using simulations
	4.4.3 Evaluations against production workloads

	4.5 Discussion
	4.6 Summary

	5 End-to-end resource allocation and scheduling for micro-services
	5.1 Context, objectives and challenges
	5.1.1 SOA characteristics
	5.1.2 Goals of Cicero
	5.1.3 Challenges of regulating load and latencies

	5.2 Cicero design
	5.2.1 Design space
	5.2.2 Cicero components
	5.2.3 Cicero architecture
	5.2.4 Cicero core
	5.2.5 Operator policies
	5.2.6 Implementation

	5.3 Cicero Evaluation
	5.3.1 Can Cicero enforce performance isolation?
	5.3.2 Can Cicero meet end-to-end deadline targets?
	5.3.3 Can Cicero isolate low-latency workflows from high-throughput workflows?
	5.3.4 Can the rate adaptation react to hotspots from skewed access patterns?
	5.3.5 Quantile knob sensitivity analysis

	5.4 Discussion
	5.5 Summary

	6 Conclusions and outlook
	6.1 Summary
	6.2 Future directions

	List of Figures
	List of Tables
	Bibliography

